{"title":"具有恒流和恒压特性的两种三线圈 MCR-WPT 系统的分析和实验验证","authors":"Haichao Chen, Pengfei Zhang, Lijiao Gong, Tong Yang, Xin Xin Ma, Bo Huang","doi":"10.1002/cta.4226","DOIUrl":null,"url":null,"abstract":"In order to achieve an optimized design of a three‐coil wireless power transfer (WPT) system with constant voltage (CV) and constant current (CC) output characteristics, meeting the power supply demands of rechargeable loads for CV/CC, this paper conducts an in‐depth research on the three‐coil magnetically coupled resonance (MCR) WPT system. A novel method for CV/CC output switching under the MCR‐WPT system is proposed. Firstly, a coupled inductance model is established, and the compensation parameter expressions of both single‐transmitter single‐receiver (STSR) three‐coil WPT system with relay coil and double‐transmitter single‐receiver (DTSR) three‐coil WPT system are derived. A compensation network parameter design method to achieve zero phase angle (ZPA) condition is proposed. This proposed three‐coil WPT system can achieve CV/CC output switching by a single alternating current (AC) switch. The transmission characteristics of these two MCR‐WPT systems are analyzed, and the transmission efficiency and lateral offset capability of the systems are compared. Experimental results demonstrate stable energy transfer of the system, validating the correctness and effectiveness of the proposed system's CV/CC output characteristics and parameter design methods. The results indicate that the proposed system can achieve stable CV/CC output.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and experimental verification of two types of three‐coil MCR‐WPT system with constant current and constant voltage characteristics\",\"authors\":\"Haichao Chen, Pengfei Zhang, Lijiao Gong, Tong Yang, Xin Xin Ma, Bo Huang\",\"doi\":\"10.1002/cta.4226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to achieve an optimized design of a three‐coil wireless power transfer (WPT) system with constant voltage (CV) and constant current (CC) output characteristics, meeting the power supply demands of rechargeable loads for CV/CC, this paper conducts an in‐depth research on the three‐coil magnetically coupled resonance (MCR) WPT system. A novel method for CV/CC output switching under the MCR‐WPT system is proposed. Firstly, a coupled inductance model is established, and the compensation parameter expressions of both single‐transmitter single‐receiver (STSR) three‐coil WPT system with relay coil and double‐transmitter single‐receiver (DTSR) three‐coil WPT system are derived. A compensation network parameter design method to achieve zero phase angle (ZPA) condition is proposed. This proposed three‐coil WPT system can achieve CV/CC output switching by a single alternating current (AC) switch. The transmission characteristics of these two MCR‐WPT systems are analyzed, and the transmission efficiency and lateral offset capability of the systems are compared. Experimental results demonstrate stable energy transfer of the system, validating the correctness and effectiveness of the proposed system's CV/CC output characteristics and parameter design methods. The results indicate that the proposed system can achieve stable CV/CC output.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4226\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4226","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis and experimental verification of two types of three‐coil MCR‐WPT system with constant current and constant voltage characteristics
In order to achieve an optimized design of a three‐coil wireless power transfer (WPT) system with constant voltage (CV) and constant current (CC) output characteristics, meeting the power supply demands of rechargeable loads for CV/CC, this paper conducts an in‐depth research on the three‐coil magnetically coupled resonance (MCR) WPT system. A novel method for CV/CC output switching under the MCR‐WPT system is proposed. Firstly, a coupled inductance model is established, and the compensation parameter expressions of both single‐transmitter single‐receiver (STSR) three‐coil WPT system with relay coil and double‐transmitter single‐receiver (DTSR) three‐coil WPT system are derived. A compensation network parameter design method to achieve zero phase angle (ZPA) condition is proposed. This proposed three‐coil WPT system can achieve CV/CC output switching by a single alternating current (AC) switch. The transmission characteristics of these two MCR‐WPT systems are analyzed, and the transmission efficiency and lateral offset capability of the systems are compared. Experimental results demonstrate stable energy transfer of the system, validating the correctness and effectiveness of the proposed system's CV/CC output characteristics and parameter design methods. The results indicate that the proposed system can achieve stable CV/CC output.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.