{"title":"为宽带应用设计基于扩展连续 GF 类模式的 Doherty 功率放大器","authors":"Xuefei Xuan, Zhiqun Cheng, Brendan Hayes, Zhiwei Zhang, Ziming Zhao, Tingwei Gong, Chao Le","doi":"10.1002/cta.4215","DOIUrl":null,"url":null,"abstract":"In this article, a systematic theory and design approach are presented to achieve bandwidth expansion of the Doherty power amplifier (DPA) by using extended continuous Class‐GF (ECCGF) power amplifiers (PAs) as carrier PAs. The results of the theoretical analysis indicate that compared to conventional DPA, introducing ECCGF PA as carrier PA into the DPA design can establish two larger target impedance spaces with overlapping regions for saturation and output back‐off (OBO) power levels, which can reduce the design complexity of impedance inverter networks (IINs) while achieving DPA bandwidth expansion. Based on this, the proposed design theory is validated in the design and fabrication of a prototype DPA employing the CGH40010F GaN HEMT provided by MACOM. The measured results show that under continuous wave excitation, the designed DPA delivers a saturated output power of 43.1–44.2 dBm in the range of 1.3–2.7 GHz with a relative bandwidth of 70%. The drain efficiencies of 61.2%–73.2% and 42.5%–52.7% are achieved over the entire band at the saturation and 6‐dB OBO power levels, respectively. The measured results also confirmed the theoretical findings.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Doherty power amplifier based on extended continuous class‐GF mode for broadband applications\",\"authors\":\"Xuefei Xuan, Zhiqun Cheng, Brendan Hayes, Zhiwei Zhang, Ziming Zhao, Tingwei Gong, Chao Le\",\"doi\":\"10.1002/cta.4215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a systematic theory and design approach are presented to achieve bandwidth expansion of the Doherty power amplifier (DPA) by using extended continuous Class‐GF (ECCGF) power amplifiers (PAs) as carrier PAs. The results of the theoretical analysis indicate that compared to conventional DPA, introducing ECCGF PA as carrier PA into the DPA design can establish two larger target impedance spaces with overlapping regions for saturation and output back‐off (OBO) power levels, which can reduce the design complexity of impedance inverter networks (IINs) while achieving DPA bandwidth expansion. Based on this, the proposed design theory is validated in the design and fabrication of a prototype DPA employing the CGH40010F GaN HEMT provided by MACOM. The measured results show that under continuous wave excitation, the designed DPA delivers a saturated output power of 43.1–44.2 dBm in the range of 1.3–2.7 GHz with a relative bandwidth of 70%. The drain efficiencies of 61.2%–73.2% and 42.5%–52.7% are achieved over the entire band at the saturation and 6‐dB OBO power levels, respectively. The measured results also confirmed the theoretical findings.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4215\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4215","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a Doherty power amplifier based on extended continuous class‐GF mode for broadband applications
In this article, a systematic theory and design approach are presented to achieve bandwidth expansion of the Doherty power amplifier (DPA) by using extended continuous Class‐GF (ECCGF) power amplifiers (PAs) as carrier PAs. The results of the theoretical analysis indicate that compared to conventional DPA, introducing ECCGF PA as carrier PA into the DPA design can establish two larger target impedance spaces with overlapping regions for saturation and output back‐off (OBO) power levels, which can reduce the design complexity of impedance inverter networks (IINs) while achieving DPA bandwidth expansion. Based on this, the proposed design theory is validated in the design and fabrication of a prototype DPA employing the CGH40010F GaN HEMT provided by MACOM. The measured results show that under continuous wave excitation, the designed DPA delivers a saturated output power of 43.1–44.2 dBm in the range of 1.3–2.7 GHz with a relative bandwidth of 70%. The drain efficiencies of 61.2%–73.2% and 42.5%–52.7% are achieved over the entire band at the saturation and 6‐dB OBO power levels, respectively. The measured results also confirmed the theoretical findings.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.