Marcus V. M. Rodrigues, Rafael Santos, Luis De Oro Arenas, Fernando P. Marafão, Flávio A. S. Gonçalves
{"title":"硬件和漏感限制下 Y 源 DC-DC 转换器的建模、设计和性能分析","authors":"Marcus V. M. Rodrigues, Rafael Santos, Luis De Oro Arenas, Fernando P. Marafão, Flávio A. S. Gonçalves","doi":"10.1002/cta.4243","DOIUrl":null,"url":null,"abstract":"The widespread of renewable energy sources often requires DC‐DC power converters with higher operational flexibility and voltage gain capability. The Y‐source converter offers significant features to fill this demand, but its performance can be negatively affected by coupled‐inductor leakage inductances. This paper presents simplified models for the Y‐source DC‐DC converter (YSDC) that, although not directly including the presence of leakage inductances, offer a satisfactory description of how the converter operates in terms of its steady‐state behavior, small‐signal dynamics, and estimation of power losses. These models allow for a comprehensive analysis of how non‐ideal components in the converter affect the determination of the YSDC voltage gain and efficiency and allow one to identify the most interesting design alternatives to satisfy the current and voltage stress constraints placed on the converter power switches, thus excluding undesired converter design alternatives. Experimental results with a 280 W real converter, using coupled‐inductor with leakage inductances, present results similar to those of switched circuit simulations and the derived models, thus confirming that the simplified models present satisfactory adherence to the real converter performance over the majority extent of the maximum duty cycle.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":"124 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling, design, and performance analysis of a Y‐source DC‐DC converter under limitations of hardware and leakage inductances\",\"authors\":\"Marcus V. M. Rodrigues, Rafael Santos, Luis De Oro Arenas, Fernando P. Marafão, Flávio A. S. Gonçalves\",\"doi\":\"10.1002/cta.4243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread of renewable energy sources often requires DC‐DC power converters with higher operational flexibility and voltage gain capability. The Y‐source converter offers significant features to fill this demand, but its performance can be negatively affected by coupled‐inductor leakage inductances. This paper presents simplified models for the Y‐source DC‐DC converter (YSDC) that, although not directly including the presence of leakage inductances, offer a satisfactory description of how the converter operates in terms of its steady‐state behavior, small‐signal dynamics, and estimation of power losses. These models allow for a comprehensive analysis of how non‐ideal components in the converter affect the determination of the YSDC voltage gain and efficiency and allow one to identify the most interesting design alternatives to satisfy the current and voltage stress constraints placed on the converter power switches, thus excluding undesired converter design alternatives. Experimental results with a 280 W real converter, using coupled‐inductor with leakage inductances, present results similar to those of switched circuit simulations and the derived models, thus confirming that the simplified models present satisfactory adherence to the real converter performance over the majority extent of the maximum duty cycle.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":\"124 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4243\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
可再生能源的广泛应用往往要求直流-直流电源转换器具有更高的操作灵活性和电压增益能力。Y 源转换器具有满足这一需求的显著特点,但其性能可能会受到耦合电感漏感的负面影响。本文介绍了 Y 型源 DC-DC 转换器 (YSDC) 的简化模型,虽然没有直接包括漏感的存在,但从稳态行为、小信号动态和功率损耗估算的角度,对转换器的运行方式进行了令人满意的描述。通过这些模型,可以全面分析转换器中的非理想元件如何影响 YSDC 电压增益和效率的确定,并确定最有意义的设计方案,以满足对转换器功率开关施加的电流和电压应力约束,从而排除不受欢迎的转换器设计方案。使用带漏感的耦合电感的 280 W 实际转换器的实验结果与开关电路仿真和推导模型的结果相似,从而证实简化模型在最大占空比的大部分范围内与实际转换器性能的一致性令人满意。
Modeling, design, and performance analysis of a Y‐source DC‐DC converter under limitations of hardware and leakage inductances
The widespread of renewable energy sources often requires DC‐DC power converters with higher operational flexibility and voltage gain capability. The Y‐source converter offers significant features to fill this demand, but its performance can be negatively affected by coupled‐inductor leakage inductances. This paper presents simplified models for the Y‐source DC‐DC converter (YSDC) that, although not directly including the presence of leakage inductances, offer a satisfactory description of how the converter operates in terms of its steady‐state behavior, small‐signal dynamics, and estimation of power losses. These models allow for a comprehensive analysis of how non‐ideal components in the converter affect the determination of the YSDC voltage gain and efficiency and allow one to identify the most interesting design alternatives to satisfy the current and voltage stress constraints placed on the converter power switches, thus excluding undesired converter design alternatives. Experimental results with a 280 W real converter, using coupled‐inductor with leakage inductances, present results similar to those of switched circuit simulations and the derived models, thus confirming that the simplified models present satisfactory adherence to the real converter performance over the majority extent of the maximum duty cycle.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.