机车车辆混合动力车供电系统的大信号稳定性分析

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Haoying Pei, Lijun Diao, Zheming Jin, Jia Zhang
{"title":"机车车辆混合动力车供电系统的大信号稳定性分析","authors":"Haoying Pei, Lijun Diao, Zheming Jin, Jia Zhang","doi":"10.1002/cta.4244","DOIUrl":null,"url":null,"abstract":"Hybridized vehicular power supply (HVPS) are acquiring widespread adoption in various applications such as providing power for passenger or heavy‐duty electric vehicles, more‐electric ships, electrified rolling stocks, and more. Stability analysis is a critical issue for HVPS, but it presents significant challenges due to their prominent high‐dimensional and nonlinear characteristics. This paper presents a large‐signal stability analysis scheme for HVPS of rolling stocks, enabling the assessment of system stability under sudden load changes. Based on the state‐space averaging method, a mathematical model for the large‐signal behavior of the system is established. Subsequently, the small‐signal stability parameter range of the system is determined by analyzing the eigenvalues of the Jacobian matrix. To further analyze the stability of the system during large‐signal disturbances, a nonlinear decoupling transformation approach is employed to decompose the original high‐order state equations into multiple lower‐order equations. For the decoupled lower‐order subsystems, their stability is analyzed using phase portrait, and the region of attraction (ROA) is determined using the inverse trajectory method. Based on the stability analysis results, the controller is enhanced to bring the points outside the ROA back within it, thereby mitigating the transient instability phenomenon of the system. The effectiveness of the proposed method was demonstrated using two case studies.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large‐signal stability analysis for hybridized vehicular power supply systems of rolling stocks\",\"authors\":\"Haoying Pei, Lijun Diao, Zheming Jin, Jia Zhang\",\"doi\":\"10.1002/cta.4244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybridized vehicular power supply (HVPS) are acquiring widespread adoption in various applications such as providing power for passenger or heavy‐duty electric vehicles, more‐electric ships, electrified rolling stocks, and more. Stability analysis is a critical issue for HVPS, but it presents significant challenges due to their prominent high‐dimensional and nonlinear characteristics. This paper presents a large‐signal stability analysis scheme for HVPS of rolling stocks, enabling the assessment of system stability under sudden load changes. Based on the state‐space averaging method, a mathematical model for the large‐signal behavior of the system is established. Subsequently, the small‐signal stability parameter range of the system is determined by analyzing the eigenvalues of the Jacobian matrix. To further analyze the stability of the system during large‐signal disturbances, a nonlinear decoupling transformation approach is employed to decompose the original high‐order state equations into multiple lower‐order equations. For the decoupled lower‐order subsystems, their stability is analyzed using phase portrait, and the region of attraction (ROA) is determined using the inverse trajectory method. Based on the stability analysis results, the controller is enhanced to bring the points outside the ROA back within it, thereby mitigating the transient instability phenomenon of the system. The effectiveness of the proposed method was demonstrated using two case studies.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4244\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4244","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

混合动力汽车电源(HVPS)正被广泛应用于各种领域,如为乘用车或重型电动汽车、更多电动船舶、电气化机车车辆等提供动力。稳定性分析是 HVPS 的关键问题,但由于其突出的高维和非线性特性,稳定性分析面临着巨大挑战。本文提出了机车车辆 HVPS 的大信号稳定性分析方案,可评估负载突变下的系统稳定性。基于状态空间平均法,建立了系统大信号行为的数学模型。随后,通过分析雅各布矩阵的特征值,确定了系统的小信号稳定性参数范围。为了进一步分析系统在大信号干扰时的稳定性,采用了一种非线性解耦变换方法,将原始的高阶状态方程分解为多个低阶方程。对于解耦的低阶子系统,采用相位肖像分析其稳定性,并利用反轨迹法确定吸引区域(ROA)。根据稳定性分析结果,增强控制器,使 ROA 以外的点回到 ROA 内,从而缓解系统的瞬态不稳定现象。通过两个案例研究证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large‐signal stability analysis for hybridized vehicular power supply systems of rolling stocks
Hybridized vehicular power supply (HVPS) are acquiring widespread adoption in various applications such as providing power for passenger or heavy‐duty electric vehicles, more‐electric ships, electrified rolling stocks, and more. Stability analysis is a critical issue for HVPS, but it presents significant challenges due to their prominent high‐dimensional and nonlinear characteristics. This paper presents a large‐signal stability analysis scheme for HVPS of rolling stocks, enabling the assessment of system stability under sudden load changes. Based on the state‐space averaging method, a mathematical model for the large‐signal behavior of the system is established. Subsequently, the small‐signal stability parameter range of the system is determined by analyzing the eigenvalues of the Jacobian matrix. To further analyze the stability of the system during large‐signal disturbances, a nonlinear decoupling transformation approach is employed to decompose the original high‐order state equations into multiple lower‐order equations. For the decoupled lower‐order subsystems, their stability is analyzed using phase portrait, and the region of attraction (ROA) is determined using the inverse trajectory method. Based on the stability analysis results, the controller is enhanced to bring the points outside the ROA back within it, thereby mitigating the transient instability phenomenon of the system. The effectiveness of the proposed method was demonstrated using two case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信