{"title":"基于开关电容器的高升压三端口 DC-DC 转换器,用于燃料电池/电池集成","authors":"Liyin Bai, Zhidong Qi, Xuanhao Zhou, Kaihui Chu","doi":"10.1002/cta.4276","DOIUrl":null,"url":null,"abstract":"Addressing issues of low input voltage in new energy generation systems such as fuel cells, a high step‐up three‐port DC–DC converter for fuel cell/battery hybrid power supply system is proposed. The proposed converter is evolved from Boost three‐port converter, and switch capacitor structure and diode capacitor voltage doubling unit are employed to achieve high voltage gain and low voltage stress. The three ports are connected to fuel cell, battery and load respectively, among which the flow of energy is realized. The steady state performance of this converter in various operating states and design of parameter are presented. Primary competitive advantages compared to similar converters include high voltage gain, continuous input current and its feature of common ground. Moreover, control strategy and compensators under three operating modes are designed to achieve stable output voltage and battery protection. Finally, a 100 W experimental prototype with 15 V input voltage and 24 V battery voltage is established to verify the stable and dynamic performance of the proposed converter.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Switch Capacitor–Based High Step‐Up Three‐Port DC–DC Converter for Fuel Cell/Battery Integration\",\"authors\":\"Liyin Bai, Zhidong Qi, Xuanhao Zhou, Kaihui Chu\",\"doi\":\"10.1002/cta.4276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing issues of low input voltage in new energy generation systems such as fuel cells, a high step‐up three‐port DC–DC converter for fuel cell/battery hybrid power supply system is proposed. The proposed converter is evolved from Boost three‐port converter, and switch capacitor structure and diode capacitor voltage doubling unit are employed to achieve high voltage gain and low voltage stress. The three ports are connected to fuel cell, battery and load respectively, among which the flow of energy is realized. The steady state performance of this converter in various operating states and design of parameter are presented. Primary competitive advantages compared to similar converters include high voltage gain, continuous input current and its feature of common ground. Moreover, control strategy and compensators under three operating modes are designed to achieve stable output voltage and battery protection. Finally, a 100 W experimental prototype with 15 V input voltage and 24 V battery voltage is established to verify the stable and dynamic performance of the proposed converter.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4276\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
针对燃料电池等新能源发电系统输入电压低的问题,提出了一种用于燃料电池/电池混合供电系统的高升压三端口 DC-DC 转换器。该转换器由 Boost 三端口转换器演变而来,采用开关电容器结构和二极管电容器电压倍增单元,以实现高电压增益和低电压应力。三个端口分别与燃料电池、电池和负载相连,实现了能量的流动。本文介绍了该转换器在各种工作状态下的稳态性能以及参数设计。与同类转换器相比,该转换器的主要竞争优势包括高电压增益、连续输入电流及其共地特性。此外,还设计了三种工作模式下的控制策略和补偿器,以实现稳定的输出电压和电池保护。最后,建立了一个输入电压为 15 V、电池电压为 24 V 的 100 W 实验原型,以验证所提转换器的稳定和动态性能。
Switch Capacitor–Based High Step‐Up Three‐Port DC–DC Converter for Fuel Cell/Battery Integration
Addressing issues of low input voltage in new energy generation systems such as fuel cells, a high step‐up three‐port DC–DC converter for fuel cell/battery hybrid power supply system is proposed. The proposed converter is evolved from Boost three‐port converter, and switch capacitor structure and diode capacitor voltage doubling unit are employed to achieve high voltage gain and low voltage stress. The three ports are connected to fuel cell, battery and load respectively, among which the flow of energy is realized. The steady state performance of this converter in various operating states and design of parameter are presented. Primary competitive advantages compared to similar converters include high voltage gain, continuous input current and its feature of common ground. Moreover, control strategy and compensators under three operating modes are designed to achieve stable output voltage and battery protection. Finally, a 100 W experimental prototype with 15 V input voltage and 24 V battery voltage is established to verify the stable and dynamic performance of the proposed converter.
期刊介绍:
The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.