拟议双增益伪平方降压-升压转换器的设计、分析和实验验证

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shubham Kumar Singh, Anshul Agarwal
{"title":"拟议双增益伪平方降压-升压转换器的设计、分析和实验验证","authors":"Shubham Kumar Singh, Anshul Agarwal","doi":"10.1002/cta.4232","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach to improve the efficiency and performance of a new proposed buck–boost converter. The buck–boost converter allows for voltage step‐up or step‐down operations, making it suitable for wide range applications. The proposed converter design incorporates innovative circuitry to enhance the overall system efficiency. Based on the findings, a new buck–boost converter topology is introduced, which offers improved voltage regulation, reduced losses, and increased power conversion efficiency compared to traditional converter designs. Simulation studies and experimental validations are conducted to assess the performance of the proposed new buck–boost converter. The results demonstrate significant improvements in power output and system stability of proposed converter compared to conventional converter configurations.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, analysis, and experimental validation of proposed dual gain pseudo squared buck–boost converter\",\"authors\":\"Shubham Kumar Singh, Anshul Agarwal\",\"doi\":\"10.1002/cta.4232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach to improve the efficiency and performance of a new proposed buck–boost converter. The buck–boost converter allows for voltage step‐up or step‐down operations, making it suitable for wide range applications. The proposed converter design incorporates innovative circuitry to enhance the overall system efficiency. Based on the findings, a new buck–boost converter topology is introduced, which offers improved voltage regulation, reduced losses, and increased power conversion efficiency compared to traditional converter designs. Simulation studies and experimental validations are conducted to assess the performance of the proposed new buck–boost converter. The results demonstrate significant improvements in power output and system stability of proposed converter compared to conventional converter configurations.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4232\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4232","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新方法来提高新型降压-升压转换器的效率和性能。这种降压-升压转换器可进行升压或降压操作,因此适用于各种应用。拟议的转换器设计采用了创新电路,以提高整个系统的效率。根据研究结果,引入了一种新的降压-升压转换器拓扑结构,与传统的转换器设计相比,它能改善电压调节、减少损耗并提高功率转换效率。为评估所提出的新型降压-升压转换器的性能,进行了仿真研究和实验验证。结果表明,与传统的转换器配置相比,所提出的转换器在功率输出和系统稳定性方面都有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, analysis, and experimental validation of proposed dual gain pseudo squared buck–boost converter
This study presents a novel approach to improve the efficiency and performance of a new proposed buck–boost converter. The buck–boost converter allows for voltage step‐up or step‐down operations, making it suitable for wide range applications. The proposed converter design incorporates innovative circuitry to enhance the overall system efficiency. Based on the findings, a new buck–boost converter topology is introduced, which offers improved voltage regulation, reduced losses, and increased power conversion efficiency compared to traditional converter designs. Simulation studies and experimental validations are conducted to assess the performance of the proposed new buck–boost converter. The results demonstrate significant improvements in power output and system stability of proposed converter compared to conventional converter configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信