Faiza Boukazouha, Hamza Barkat, Abdesselam Rouabha, Abderahim Herbadji, Mohamed Rguiti
{"title":"电气测试装置对以前三模振动的无负载罗森型压电变压器电压增益测量的影响","authors":"Faiza Boukazouha, Hamza Barkat, Abdesselam Rouabha, Abderahim Herbadji, Mohamed Rguiti","doi":"10.2478/msr-2024-0019","DOIUrl":null,"url":null,"abstract":"In recent years, Piezoelectric Transformers (PTs) have become a great success due to their excellent properties, especially in applications requiring high voltage. The Rosen-type PT is well known for this performance, as its voltage gain at the resonant frequency can reach few thousands. However, the high output impedance of this device can make an accurate electrical measurement of the output voltage difficult, hence the need to ensure good impedance matching along the measuring electrical test setup. For this purpose, two high impedance oscilloscope probes were successively added to the secondary side to further emulate the measurement chain and match the experiments as closely as possible with the developed 1D model. Accordingly, for an unloaded Rosen type piezoelectric transformer, made of hard ceramic (pz26) with corresponding dimensions 2L×w×t =25 mm×3 mm×2 mm and operating in the first three modes, the corresponding input impedances Zin were evaluated at 665 Ω - 225 Ω and 1974 Ω, while the output impedances Zout were evaluated at 19.2 MΩ - 15.4 MΩ, and 1.8 MΩ. A voltage gain of 164, 179 and 23 at frequencies of 69.4 kHz, 136 kHz and 204.6 kHz, respectively was successfully measured, with a precision of less than 5%. In addition, a detailed equivalent circuit of the transformer was built and all its lumped RLC components were experimentally identified using the Nyquist diagram showing, on the whole, a well-accepted agreement with the expected results.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Electrical Test Setup on the Voltage Gain Measurement of an Unloaded Rosen-Type Piezoelectric Transformer Vibrating in the First Three Modes\",\"authors\":\"Faiza Boukazouha, Hamza Barkat, Abdesselam Rouabha, Abderahim Herbadji, Mohamed Rguiti\",\"doi\":\"10.2478/msr-2024-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Piezoelectric Transformers (PTs) have become a great success due to their excellent properties, especially in applications requiring high voltage. The Rosen-type PT is well known for this performance, as its voltage gain at the resonant frequency can reach few thousands. However, the high output impedance of this device can make an accurate electrical measurement of the output voltage difficult, hence the need to ensure good impedance matching along the measuring electrical test setup. For this purpose, two high impedance oscilloscope probes were successively added to the secondary side to further emulate the measurement chain and match the experiments as closely as possible with the developed 1D model. Accordingly, for an unloaded Rosen type piezoelectric transformer, made of hard ceramic (pz26) with corresponding dimensions 2L×w×t =25 mm×3 mm×2 mm and operating in the first three modes, the corresponding input impedances Zin were evaluated at 665 Ω - 225 Ω and 1974 Ω, while the output impedances Zout were evaluated at 19.2 MΩ - 15.4 MΩ, and 1.8 MΩ. A voltage gain of 164, 179 and 23 at frequencies of 69.4 kHz, 136 kHz and 204.6 kHz, respectively was successfully measured, with a precision of less than 5%. In addition, a detailed equivalent circuit of the transformer was built and all its lumped RLC components were experimentally identified using the Nyquist diagram showing, on the whole, a well-accepted agreement with the expected results.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2024-0019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2024-0019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Influence of the Electrical Test Setup on the Voltage Gain Measurement of an Unloaded Rosen-Type Piezoelectric Transformer Vibrating in the First Three Modes
In recent years, Piezoelectric Transformers (PTs) have become a great success due to their excellent properties, especially in applications requiring high voltage. The Rosen-type PT is well known for this performance, as its voltage gain at the resonant frequency can reach few thousands. However, the high output impedance of this device can make an accurate electrical measurement of the output voltage difficult, hence the need to ensure good impedance matching along the measuring electrical test setup. For this purpose, two high impedance oscilloscope probes were successively added to the secondary side to further emulate the measurement chain and match the experiments as closely as possible with the developed 1D model. Accordingly, for an unloaded Rosen type piezoelectric transformer, made of hard ceramic (pz26) with corresponding dimensions 2L×w×t =25 mm×3 mm×2 mm and operating in the first three modes, the corresponding input impedances Zin were evaluated at 665 Ω - 225 Ω and 1974 Ω, while the output impedances Zout were evaluated at 19.2 MΩ - 15.4 MΩ, and 1.8 MΩ. A voltage gain of 164, 179 and 23 at frequencies of 69.4 kHz, 136 kHz and 204.6 kHz, respectively was successfully measured, with a precision of less than 5%. In addition, a detailed equivalent circuit of the transformer was built and all its lumped RLC components were experimentally identified using the Nyquist diagram showing, on the whole, a well-accepted agreement with the expected results.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science