单晶塑性中内点算法的障碍更新策略比较

IF 2.2 3区 工程技术 Q2 MECHANICS
Lisa Scheunemann, Felix Steinmetz, Paulo Nigro
{"title":"单晶塑性中内点算法的障碍更新策略比较","authors":"Lisa Scheunemann,&nbsp;Felix Steinmetz,&nbsp;Paulo Nigro","doi":"10.1007/s00419-024-02663-w","DOIUrl":null,"url":null,"abstract":"<div><p>This contribution discusses the influence of different barrier update strategies on the performance and robustness of an interior point algorithm for single-crystal plasticity at small strains. To this end, single-crystal plasticity is first briefly presented in the framework of a primal-dual interior point algorithm to outline the general algorithmic structure. The manner in which the barrier parameter is modified within the interior point method, steering the penalization of constraints, plays a crucial role for the robustness and efficiency of the overall algorithm. In this paper, we compare and analyze different strategies in the framework of crystal plasticity. In a thorough analysis of a numerical example covering a broad range of settings in monocrystals, we investigate robust hyperparameter ranges and identify the most efficient and robust barrier parameter update strategies.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 9","pages":"2565 - 2582"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00419-024-02663-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparison of barrier update strategies for interior point algorithms in single-crystal plasticity\",\"authors\":\"Lisa Scheunemann,&nbsp;Felix Steinmetz,&nbsp;Paulo Nigro\",\"doi\":\"10.1007/s00419-024-02663-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This contribution discusses the influence of different barrier update strategies on the performance and robustness of an interior point algorithm for single-crystal plasticity at small strains. To this end, single-crystal plasticity is first briefly presented in the framework of a primal-dual interior point algorithm to outline the general algorithmic structure. The manner in which the barrier parameter is modified within the interior point method, steering the penalization of constraints, plays a crucial role for the robustness and efficiency of the overall algorithm. In this paper, we compare and analyze different strategies in the framework of crystal plasticity. In a thorough analysis of a numerical example covering a broad range of settings in monocrystals, we investigate robust hyperparameter ranges and identify the most efficient and robust barrier parameter update strategies.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"94 9\",\"pages\":\"2565 - 2582\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00419-024-02663-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-024-02663-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02663-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了不同的势垒更新策略对小应变下单晶塑性内点算法的性能和鲁棒性的影响。为此,本文首先简要介绍了原始二元内点算法框架下的单晶塑性,以概述一般算法结构。在内含点算法中,如何修改障碍参数,引导约束条件的惩罚,对整个算法的稳健性和效率起着至关重要的作用。本文比较和分析了晶体塑性框架下的不同策略。通过对涵盖单晶体广泛设置的数值示例进行深入分析,我们研究了稳健超参数范围,并确定了最高效、最稳健的势垒参数更新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of barrier update strategies for interior point algorithms in single-crystal plasticity

Comparison of barrier update strategies for interior point algorithms in single-crystal plasticity

This contribution discusses the influence of different barrier update strategies on the performance and robustness of an interior point algorithm for single-crystal plasticity at small strains. To this end, single-crystal plasticity is first briefly presented in the framework of a primal-dual interior point algorithm to outline the general algorithmic structure. The manner in which the barrier parameter is modified within the interior point method, steering the penalization of constraints, plays a crucial role for the robustness and efficiency of the overall algorithm. In this paper, we compare and analyze different strategies in the framework of crystal plasticity. In a thorough analysis of a numerical example covering a broad range of settings in monocrystals, we investigate robust hyperparameter ranges and identify the most efficient and robust barrier parameter update strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信