Thi Thu Hien Bui, Pham Tran Anh Nguyen, Thanh Mai Vu, Thi Huong Giang Tran, Thi Kim Chi Tran and Thi Thuong Huyen Tran
{"title":"Ag3PO4 漂浮光催化剂的简单沉淀合成和太阳光驱动的光催化降解","authors":"Thi Thu Hien Bui, Pham Tran Anh Nguyen, Thanh Mai Vu, Thi Huong Giang Tran, Thi Kim Chi Tran and Thi Thuong Huyen Tran","doi":"10.1088/2053-1591/ad719a","DOIUrl":null,"url":null,"abstract":"A highly efficient and stable photocatalyst, Ag3PO4, was prepared using a simple co-precipitation method at room temperature. The precursors used in this process were AgNO3 and K2HPO4. The resulting Ag3PO4 photocatalyst forms irregularly-shaped spheres with diameters ranging from 300 to 1 μm. The shape of the Ag3PO4 photocatalyst slightly changes when different surfactants (PVA, PVP, PEG) are used. The powdered Ag3PO4 photocatalyst exhibits excellent visible light-driven photocatalytic performance. It is capable of decomposing rhodamine B (RhB) as a model pollutant in just 5 min under visible light irradiation. This performance is quite remarkable. Interestingly, Ag3PO4 floating composite sheets have been achieved using polystyrene (PS) and fumed silica Aerosil 200. After three cycles, the decolorization of RhB dyes remains at 87% with the 30% Ag3PO4@PS/Aerosil 200 sheet. This indicates that the Ag3PO4@PS/Aerosil 200 photocatalyst is highly reusable and stable.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple precipitation synthesis and solar light-driven photocatalytic degradation of Ag3PO4 floating photocatalysts\",\"authors\":\"Thi Thu Hien Bui, Pham Tran Anh Nguyen, Thanh Mai Vu, Thi Huong Giang Tran, Thi Kim Chi Tran and Thi Thuong Huyen Tran\",\"doi\":\"10.1088/2053-1591/ad719a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly efficient and stable photocatalyst, Ag3PO4, was prepared using a simple co-precipitation method at room temperature. The precursors used in this process were AgNO3 and K2HPO4. The resulting Ag3PO4 photocatalyst forms irregularly-shaped spheres with diameters ranging from 300 to 1 μm. The shape of the Ag3PO4 photocatalyst slightly changes when different surfactants (PVA, PVP, PEG) are used. The powdered Ag3PO4 photocatalyst exhibits excellent visible light-driven photocatalytic performance. It is capable of decomposing rhodamine B (RhB) as a model pollutant in just 5 min under visible light irradiation. This performance is quite remarkable. Interestingly, Ag3PO4 floating composite sheets have been achieved using polystyrene (PS) and fumed silica Aerosil 200. After three cycles, the decolorization of RhB dyes remains at 87% with the 30% Ag3PO4@PS/Aerosil 200 sheet. This indicates that the Ag3PO4@PS/Aerosil 200 photocatalyst is highly reusable and stable.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad719a\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad719a","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simple precipitation synthesis and solar light-driven photocatalytic degradation of Ag3PO4 floating photocatalysts
A highly efficient and stable photocatalyst, Ag3PO4, was prepared using a simple co-precipitation method at room temperature. The precursors used in this process were AgNO3 and K2HPO4. The resulting Ag3PO4 photocatalyst forms irregularly-shaped spheres with diameters ranging from 300 to 1 μm. The shape of the Ag3PO4 photocatalyst slightly changes when different surfactants (PVA, PVP, PEG) are used. The powdered Ag3PO4 photocatalyst exhibits excellent visible light-driven photocatalytic performance. It is capable of decomposing rhodamine B (RhB) as a model pollutant in just 5 min under visible light irradiation. This performance is quite remarkable. Interestingly, Ag3PO4 floating composite sheets have been achieved using polystyrene (PS) and fumed silica Aerosil 200. After three cycles, the decolorization of RhB dyes remains at 87% with the 30% Ag3PO4@PS/Aerosil 200 sheet. This indicates that the Ag3PO4@PS/Aerosil 200 photocatalyst is highly reusable and stable.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.