Syed Muhammad Mahad, Rehan Khan, Michał Wieczorowski, Jana Petru, Asiful H Seikh and Ibrahim A Alnaser
{"title":"pH 值对多相流 3D 打印聚乳酸侵蚀磨损的影响","authors":"Syed Muhammad Mahad, Rehan Khan, Michał Wieczorowski, Jana Petru, Asiful H Seikh and Ibrahim A Alnaser","doi":"10.1088/2053-1591/ad75e5","DOIUrl":null,"url":null,"abstract":"Slurry erosion presents a critical challenge in hydrocarbon and cement processing industries, as well as in abrasive water jet cutting systems, leading to diminished operational efficiency and elevated maintenance costs. This study investigates the erosive wear behavior of Poly-Lactic Acid (PLA) fabricated with varying infill microtextures—zigzag, concentric, and grid—under diverse pH conditions (2.73, 7.75, and 10.15) using garnet particles as the erodent. The results demonstrate that optimal operational conditions for PLA are achieved with a grid microtexture, a pH of 7.75, and a 325 μm erodent size. Conversely, the most severe wear occurs under a pH of 10.15, a 600 μm erodent size, and a zigzag microtexture. The grid microtexture is the most effective in minimizing erosion, while the zigzag pattern shows a 16.68% increase in wear when compared to the grid microtexture. Additionally, a shift from a slightly basic to a highly acidic environment increases wear by 1%, whereas a transition to a highly basic environment leads to a 32.6% increase in erosion within the grid microtexture. The study highlights the significant contributions of infill microtexture (64%), erodent size (23.7%), and pH value (11%) to the overall erosion rate.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of pH value on erosive wear of 3D-printed polylactic acid for multiphase flow\",\"authors\":\"Syed Muhammad Mahad, Rehan Khan, Michał Wieczorowski, Jana Petru, Asiful H Seikh and Ibrahim A Alnaser\",\"doi\":\"10.1088/2053-1591/ad75e5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slurry erosion presents a critical challenge in hydrocarbon and cement processing industries, as well as in abrasive water jet cutting systems, leading to diminished operational efficiency and elevated maintenance costs. This study investigates the erosive wear behavior of Poly-Lactic Acid (PLA) fabricated with varying infill microtextures—zigzag, concentric, and grid—under diverse pH conditions (2.73, 7.75, and 10.15) using garnet particles as the erodent. The results demonstrate that optimal operational conditions for PLA are achieved with a grid microtexture, a pH of 7.75, and a 325 μm erodent size. Conversely, the most severe wear occurs under a pH of 10.15, a 600 μm erodent size, and a zigzag microtexture. The grid microtexture is the most effective in minimizing erosion, while the zigzag pattern shows a 16.68% increase in wear when compared to the grid microtexture. Additionally, a shift from a slightly basic to a highly acidic environment increases wear by 1%, whereas a transition to a highly basic environment leads to a 32.6% increase in erosion within the grid microtexture. The study highlights the significant contributions of infill microtexture (64%), erodent size (23.7%), and pH value (11%) to the overall erosion rate.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad75e5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad75e5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of pH value on erosive wear of 3D-printed polylactic acid for multiphase flow
Slurry erosion presents a critical challenge in hydrocarbon and cement processing industries, as well as in abrasive water jet cutting systems, leading to diminished operational efficiency and elevated maintenance costs. This study investigates the erosive wear behavior of Poly-Lactic Acid (PLA) fabricated with varying infill microtextures—zigzag, concentric, and grid—under diverse pH conditions (2.73, 7.75, and 10.15) using garnet particles as the erodent. The results demonstrate that optimal operational conditions for PLA are achieved with a grid microtexture, a pH of 7.75, and a 325 μm erodent size. Conversely, the most severe wear occurs under a pH of 10.15, a 600 μm erodent size, and a zigzag microtexture. The grid microtexture is the most effective in minimizing erosion, while the zigzag pattern shows a 16.68% increase in wear when compared to the grid microtexture. Additionally, a shift from a slightly basic to a highly acidic environment increases wear by 1%, whereas a transition to a highly basic environment leads to a 32.6% increase in erosion within the grid microtexture. The study highlights the significant contributions of infill microtexture (64%), erodent size (23.7%), and pH value (11%) to the overall erosion rate.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.