用数学编程优化农村公路养护方案

Q1 Mathematics
Fei Shan, Hui Li, Zhongren Wang, Ming Jin, Dawei Chen
{"title":"用数学编程优化农村公路养护方案","authors":"Fei Shan, Hui Li, Zhongren Wang, Ming Jin, Dawei Chen","doi":"10.3390/app14188253","DOIUrl":null,"url":null,"abstract":"Maintaining rural highways is crucial in ensuring the reliability and efficiency of transportation infrastructure in modern rural areas. Rural highways often suffer heavy traffic from logistics and regular transportation users. The efficient management of these roads is essential to avoid issues like traffic bottlenecks, fuel consumption, and environmental problems. Traditional maintenance approaches focus on cost reduction, which can lead to adverse effects such as network congestion and environmental damage. To address these challenges, this study proposes a bi-level mathematical programming model aiming at optimizing rural highway maintenance. This model balances maintenance costs, network congestion, system fuel consumption, and environmental impacts. By transforming the bi-level model into a single-level mixed-integer linear programming model, the study enhances the computational feasibility, enabling practical implementation using commercial solvers. The model’s effectiveness is validated through numerical examples, providing insights for the development of optimal maintenance schedules that minimize externality costs while adhering to financial constraints and operational guidelines, providing a valuable addition to the road engineer’s toolbox.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Rural Highway Maintenance Scheme with Mathematical Programming\",\"authors\":\"Fei Shan, Hui Li, Zhongren Wang, Ming Jin, Dawei Chen\",\"doi\":\"10.3390/app14188253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining rural highways is crucial in ensuring the reliability and efficiency of transportation infrastructure in modern rural areas. Rural highways often suffer heavy traffic from logistics and regular transportation users. The efficient management of these roads is essential to avoid issues like traffic bottlenecks, fuel consumption, and environmental problems. Traditional maintenance approaches focus on cost reduction, which can lead to adverse effects such as network congestion and environmental damage. To address these challenges, this study proposes a bi-level mathematical programming model aiming at optimizing rural highway maintenance. This model balances maintenance costs, network congestion, system fuel consumption, and environmental impacts. By transforming the bi-level model into a single-level mixed-integer linear programming model, the study enhances the computational feasibility, enabling practical implementation using commercial solvers. The model’s effectiveness is validated through numerical examples, providing insights for the development of optimal maintenance schedules that minimize externality costs while adhering to financial constraints and operational guidelines, providing a valuable addition to the road engineer’s toolbox.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

维护农村公路对于确保现代农村地区交通基础设施的可靠性和效率至关重要。农村公路往往承受着物流和常规运输用户带来的巨大交通压力。为避免交通瓶颈、燃料消耗和环境问题,对这些公路进行有效管理至关重要。传统的维护方法侧重于降低成本,这可能会导致网络拥堵和环境破坏等不利影响。为应对这些挑战,本研究提出了一种旨在优化农村公路养护的双层数学编程模型。该模型兼顾了养护成本、网络拥堵、系统油耗和环境影响。通过将双层模型转化为单层混合整数线性规划模型,本研究提高了计算可行性,从而可以使用商业求解器进行实际实施。该模型的有效性通过数值示例得到了验证,为制定最优维护计划提供了启示,从而在遵守财务约束和运营准则的同时,最大限度地降低外部成本,为道路工程师的工具箱增添了宝贵的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Rural Highway Maintenance Scheme with Mathematical Programming
Maintaining rural highways is crucial in ensuring the reliability and efficiency of transportation infrastructure in modern rural areas. Rural highways often suffer heavy traffic from logistics and regular transportation users. The efficient management of these roads is essential to avoid issues like traffic bottlenecks, fuel consumption, and environmental problems. Traditional maintenance approaches focus on cost reduction, which can lead to adverse effects such as network congestion and environmental damage. To address these challenges, this study proposes a bi-level mathematical programming model aiming at optimizing rural highway maintenance. This model balances maintenance costs, network congestion, system fuel consumption, and environmental impacts. By transforming the bi-level model into a single-level mixed-integer linear programming model, the study enhances the computational feasibility, enabling practical implementation using commercial solvers. The model’s effectiveness is validated through numerical examples, providing insights for the development of optimal maintenance schedules that minimize externality costs while adhering to financial constraints and operational guidelines, providing a valuable addition to the road engineer’s toolbox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信