George Papageorgiou, Vangelis Sarlis, Manolis Maragoudakis, Christos Tjortjis
{"title":"通过先进的、模块化和可复制的大型语言模型架构增强电子政务服务","authors":"George Papageorgiou, Vangelis Sarlis, Manolis Maragoudakis, Christos Tjortjis","doi":"10.3390/app14188259","DOIUrl":null,"url":null,"abstract":"Integrating Large Language Models (LLMs) into e-government applications has the potential to improve public service delivery through advanced data processing and automation. This paper explores critical aspects of a modular and reproducible architecture based on Retrieval-Augmented Generation (RAG) for deploying LLM-based assistants within e-government systems. By examining current practices and challenges, we propose a framework ensuring that Artificial Intelligence (AI) systems are modular and reproducible, essential for maintaining scalability, transparency, and ethical standards. Our approach utilizing Haystack demonstrates a complete multi-agent Generative AI (GAI) virtual assistant that facilitates scalability and reproducibility by allowing individual components to be independently scaled. This research focuses on a comprehensive review of the existing literature and presents case study examples to demonstrate how such an architecture can enhance public service operations. This framework provides a valuable case study for researchers, policymakers, and practitioners interested in exploring the integration of advanced computational linguistics and LLMs into e-government services, although it could benefit from further empirical validation.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing E-Government Services through State-of-the-Art, Modular, and Reproducible Architecture over Large Language Models\",\"authors\":\"George Papageorgiou, Vangelis Sarlis, Manolis Maragoudakis, Christos Tjortjis\",\"doi\":\"10.3390/app14188259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating Large Language Models (LLMs) into e-government applications has the potential to improve public service delivery through advanced data processing and automation. This paper explores critical aspects of a modular and reproducible architecture based on Retrieval-Augmented Generation (RAG) for deploying LLM-based assistants within e-government systems. By examining current practices and challenges, we propose a framework ensuring that Artificial Intelligence (AI) systems are modular and reproducible, essential for maintaining scalability, transparency, and ethical standards. Our approach utilizing Haystack demonstrates a complete multi-agent Generative AI (GAI) virtual assistant that facilitates scalability and reproducibility by allowing individual components to be independently scaled. This research focuses on a comprehensive review of the existing literature and presents case study examples to demonstrate how such an architecture can enhance public service operations. This framework provides a valuable case study for researchers, policymakers, and practitioners interested in exploring the integration of advanced computational linguistics and LLMs into e-government services, although it could benefit from further empirical validation.\",\"PeriodicalId\":8224,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14188259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Enhancing E-Government Services through State-of-the-Art, Modular, and Reproducible Architecture over Large Language Models
Integrating Large Language Models (LLMs) into e-government applications has the potential to improve public service delivery through advanced data processing and automation. This paper explores critical aspects of a modular and reproducible architecture based on Retrieval-Augmented Generation (RAG) for deploying LLM-based assistants within e-government systems. By examining current practices and challenges, we propose a framework ensuring that Artificial Intelligence (AI) systems are modular and reproducible, essential for maintaining scalability, transparency, and ethical standards. Our approach utilizing Haystack demonstrates a complete multi-agent Generative AI (GAI) virtual assistant that facilitates scalability and reproducibility by allowing individual components to be independently scaled. This research focuses on a comprehensive review of the existing literature and presents case study examples to demonstrate how such an architecture can enhance public service operations. This framework provides a valuable case study for researchers, policymakers, and practitioners interested in exploring the integration of advanced computational linguistics and LLMs into e-government services, although it could benefit from further empirical validation.
期刊介绍:
APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.