{"title":"氧化秋葵胶和羧甲基壳聚糖的希夫基水凝胶:一种用于伤口护理的生物相容性和生物可降解注射给药系统","authors":"Jitendra Kumar, Roli Purwar","doi":"10.1007/s00396-024-05316-0","DOIUrl":null,"url":null,"abstract":"<div><p>For the first time, functionalized okra gum with multi-aldehyde groups (OG-CHO) and carboxymethyl chitosan (CMCh) is used to create injectable hydrogels (IHs) via Schiff base reaction at 37 °C. Gelation time is optimized based on the ratio of aldehyde groups of OG-CHO to amine groups of CMCh (9 ± 3 to 2 ± 1 min). Physical characteristics such as gel content (84 ± 2) and porosity (66 ± 3) are assessed. The syringeability, injectability, and self-healing properties are evaluated qualitatively and quantitatively using a rheometer. Structural analysis is carried out by FT-IR and <sup>1</sup>H-NMR spectroscopy, while surface morphology and pore size (80 ± 5 µm) are examined via SEM. The swelling ratio is studied in the gel state of the IH in phosphate buffer saline (PBS) at varying pH levels of 5.5, 7.4, and 8.5, revealing a decrease in swelling ratio with increasing pH from 5.5 to 7.4 (75 ± 24 to 635 ± 20%), followed by an increase in swelling at pH 8.5 (724 ± 18.5%). Ciprofloxacin is employed as a model drug for release assays, and drug release behavior in gel forms of IH across different wound pH ranges is evaluated. The swelling and drug release behavior is described using the Korsmeyer–Peppas model, which shows non-Fickian diffusion. Furthermore, biocompatibility (cell viability > 90%), antibacterial assay, and in vitro degradation (~ 98%) are also assessed.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 12","pages":"1923 - 1938"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Schiff base hydrogel of oxidized okra gum and carboxymethylated chitosan: a biocompatible and biodegradable injectable system for drug delivery in wound care\",\"authors\":\"Jitendra Kumar, Roli Purwar\",\"doi\":\"10.1007/s00396-024-05316-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the first time, functionalized okra gum with multi-aldehyde groups (OG-CHO) and carboxymethyl chitosan (CMCh) is used to create injectable hydrogels (IHs) via Schiff base reaction at 37 °C. Gelation time is optimized based on the ratio of aldehyde groups of OG-CHO to amine groups of CMCh (9 ± 3 to 2 ± 1 min). Physical characteristics such as gel content (84 ± 2) and porosity (66 ± 3) are assessed. The syringeability, injectability, and self-healing properties are evaluated qualitatively and quantitatively using a rheometer. Structural analysis is carried out by FT-IR and <sup>1</sup>H-NMR spectroscopy, while surface morphology and pore size (80 ± 5 µm) are examined via SEM. The swelling ratio is studied in the gel state of the IH in phosphate buffer saline (PBS) at varying pH levels of 5.5, 7.4, and 8.5, revealing a decrease in swelling ratio with increasing pH from 5.5 to 7.4 (75 ± 24 to 635 ± 20%), followed by an increase in swelling at pH 8.5 (724 ± 18.5%). Ciprofloxacin is employed as a model drug for release assays, and drug release behavior in gel forms of IH across different wound pH ranges is evaluated. The swelling and drug release behavior is described using the Korsmeyer–Peppas model, which shows non-Fickian diffusion. Furthermore, biocompatibility (cell viability > 90%), antibacterial assay, and in vitro degradation (~ 98%) are also assessed.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 12\",\"pages\":\"1923 - 1938\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05316-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05316-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Schiff base hydrogel of oxidized okra gum and carboxymethylated chitosan: a biocompatible and biodegradable injectable system for drug delivery in wound care
For the first time, functionalized okra gum with multi-aldehyde groups (OG-CHO) and carboxymethyl chitosan (CMCh) is used to create injectable hydrogels (IHs) via Schiff base reaction at 37 °C. Gelation time is optimized based on the ratio of aldehyde groups of OG-CHO to amine groups of CMCh (9 ± 3 to 2 ± 1 min). Physical characteristics such as gel content (84 ± 2) and porosity (66 ± 3) are assessed. The syringeability, injectability, and self-healing properties are evaluated qualitatively and quantitatively using a rheometer. Structural analysis is carried out by FT-IR and 1H-NMR spectroscopy, while surface morphology and pore size (80 ± 5 µm) are examined via SEM. The swelling ratio is studied in the gel state of the IH in phosphate buffer saline (PBS) at varying pH levels of 5.5, 7.4, and 8.5, revealing a decrease in swelling ratio with increasing pH from 5.5 to 7.4 (75 ± 24 to 635 ± 20%), followed by an increase in swelling at pH 8.5 (724 ± 18.5%). Ciprofloxacin is employed as a model drug for release assays, and drug release behavior in gel forms of IH across different wound pH ranges is evaluated. The swelling and drug release behavior is described using the Korsmeyer–Peppas model, which shows non-Fickian diffusion. Furthermore, biocompatibility (cell viability > 90%), antibacterial assay, and in vitro degradation (~ 98%) are also assessed.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.