Vu Viet Linh Nguyen, Thi Kieu Tien Vu, Dai Phu Huynh, Van-Tien Bui
{"title":"基于生物相容性电纺聚己内酯纳米纤维和反凸面 PDMS 的高性能三电纳米发电机,用于低频机械能采集","authors":"Vu Viet Linh Nguyen, Thi Kieu Tien Vu, Dai Phu Huynh, Van-Tien Bui","doi":"10.1007/s00396-024-05307-1","DOIUrl":null,"url":null,"abstract":"<div><p>Triboelectric nanogenerators (TENGs) made from biocompatible materials serve as promising integrated power sources for portable wearable electronics due to many advantages such as lightweight, high flexibility, simple technique, and excellent breathability. In this work, we report the fabrication of electrospun polycaprolactone micro-nanofiber films (<i>s-</i>PCL) and convex-microdome-patterned polydimethylsiloxane (<i>c-</i>PDMS) utilizing electrospinning and micromolding techniques. These materials, <i>s-</i>PCL and <i>c-</i>PDMS, are utilized as positively and negatively charged tribosurfaces, respectively, in the development of a bioTENG device. The developed TENG device can generate a superior power output of 2 mW with an open-circuit voltage (<i>V</i><sub>OC</sub>) of 188 V and short-circuit current (<i>I</i><sub>SC</sub>) of 18.5 µA, even under a low triggering frequency of 5 Hz. In addition, TENG possesses outstanding durability and output performance stability over a continuous operation of nearly 16,000 cycles. Furthermore, the TENG demonstrates its capacity to harvest mechanical energy and convert it into electricity, capable of directly illuminating more than 100 LEDs. The electrospun <i>s</i>-PCL- and <i>c</i>-PDMS-based TENG can be considered for self-powdered wearable devices attached to fingers, wrists, feet, and other human body parts.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 11","pages":"1789 - 1799"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance triboelectric nanogenerator based on biocompatible electrospun polycaprolactone nanofiber and counter convex PDMS for low-frequency mechanical energy harvesting\",\"authors\":\"Vu Viet Linh Nguyen, Thi Kieu Tien Vu, Dai Phu Huynh, Van-Tien Bui\",\"doi\":\"10.1007/s00396-024-05307-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Triboelectric nanogenerators (TENGs) made from biocompatible materials serve as promising integrated power sources for portable wearable electronics due to many advantages such as lightweight, high flexibility, simple technique, and excellent breathability. In this work, we report the fabrication of electrospun polycaprolactone micro-nanofiber films (<i>s-</i>PCL) and convex-microdome-patterned polydimethylsiloxane (<i>c-</i>PDMS) utilizing electrospinning and micromolding techniques. These materials, <i>s-</i>PCL and <i>c-</i>PDMS, are utilized as positively and negatively charged tribosurfaces, respectively, in the development of a bioTENG device. The developed TENG device can generate a superior power output of 2 mW with an open-circuit voltage (<i>V</i><sub>OC</sub>) of 188 V and short-circuit current (<i>I</i><sub>SC</sub>) of 18.5 µA, even under a low triggering frequency of 5 Hz. In addition, TENG possesses outstanding durability and output performance stability over a continuous operation of nearly 16,000 cycles. Furthermore, the TENG demonstrates its capacity to harvest mechanical energy and convert it into electricity, capable of directly illuminating more than 100 LEDs. The electrospun <i>s</i>-PCL- and <i>c</i>-PDMS-based TENG can be considered for self-powdered wearable devices attached to fingers, wrists, feet, and other human body parts.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 11\",\"pages\":\"1789 - 1799\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05307-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05307-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
High-performance triboelectric nanogenerator based on biocompatible electrospun polycaprolactone nanofiber and counter convex PDMS for low-frequency mechanical energy harvesting
Triboelectric nanogenerators (TENGs) made from biocompatible materials serve as promising integrated power sources for portable wearable electronics due to many advantages such as lightweight, high flexibility, simple technique, and excellent breathability. In this work, we report the fabrication of electrospun polycaprolactone micro-nanofiber films (s-PCL) and convex-microdome-patterned polydimethylsiloxane (c-PDMS) utilizing electrospinning and micromolding techniques. These materials, s-PCL and c-PDMS, are utilized as positively and negatively charged tribosurfaces, respectively, in the development of a bioTENG device. The developed TENG device can generate a superior power output of 2 mW with an open-circuit voltage (VOC) of 188 V and short-circuit current (ISC) of 18.5 µA, even under a low triggering frequency of 5 Hz. In addition, TENG possesses outstanding durability and output performance stability over a continuous operation of nearly 16,000 cycles. Furthermore, the TENG demonstrates its capacity to harvest mechanical energy and convert it into electricity, capable of directly illuminating more than 100 LEDs. The electrospun s-PCL- and c-PDMS-based TENG can be considered for self-powdered wearable devices attached to fingers, wrists, feet, and other human body parts.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.