聚(己二酸丁二醇酯-对苯二甲酸丁二酯)地膜的水热老化行为:基于不同填充材料的抗水解性的影响

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Xicun Chai, Jun Lin, Yaming Meng, Yutao Liu, Chunxia He
{"title":"聚(己二酸丁二醇酯-对苯二甲酸丁二酯)地膜的水热老化行为:基于不同填充材料的抗水解性的影响","authors":"Xicun Chai, Jun Lin, Yaming Meng, Yutao Liu, Chunxia He","doi":"10.1007/s00396-024-05319-x","DOIUrl":null,"url":null,"abstract":"<p>The microplastic pollution caused by traditional agricultural mulch had been revealed. The application of biodegradable mulch is one of the potential ways to solve this problem. Therefore, it is significant to investigate the hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) (PBAT) mulch. In this study, thermoplastic starch (TPS), TPS/talc, and talc-filled PBAT mulch were prepared. A 28-day hydrothermal aging test was conducted, and the mechanical properties, light transmission, water vapor barrier properties, hydrophobic performance, viscosity-average molecular weight, and characterization of the PBAT mulch were detected. The results showed that the original TPS-filled PBAT mulch had excellent mechanical properties, and its tensile strength and elongation at break reached 29.67 MPa and 1166.52%, respectively. The mechanical properties of the PBAT mulch were greatly reduced after hydrothermal aging. Hydrothermal aging would reduce the light transmittance of PBAT mulch to visible light, while the hydrolysis of starch would cause the opposite result. The hydroxyl group in TPS would reduce the water vapor barrier performance of the PBAT mulch. After hydrothermal aging, the viscosity-average molecular weight of the PBAT mulch decreases and the surface of the PBAT mulch was destroyed, which meant that the PBAT mulch was hydrolyzed. FTIR showed that hydrothermal aging could cause the fracture of ester groups. The TG spectral curve showed that the proportion of TPS in PBAT mulch decreased after hydrothermal aging, which meant that TPS was more easily hydrolyzed than PBAT. The results would promote the wide application of PBAT mulch.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) mulch: influence of the hydrolysis resistance based on the different filling materials\",\"authors\":\"Xicun Chai, Jun Lin, Yaming Meng, Yutao Liu, Chunxia He\",\"doi\":\"10.1007/s00396-024-05319-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microplastic pollution caused by traditional agricultural mulch had been revealed. The application of biodegradable mulch is one of the potential ways to solve this problem. Therefore, it is significant to investigate the hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) (PBAT) mulch. In this study, thermoplastic starch (TPS), TPS/talc, and talc-filled PBAT mulch were prepared. A 28-day hydrothermal aging test was conducted, and the mechanical properties, light transmission, water vapor barrier properties, hydrophobic performance, viscosity-average molecular weight, and characterization of the PBAT mulch were detected. The results showed that the original TPS-filled PBAT mulch had excellent mechanical properties, and its tensile strength and elongation at break reached 29.67 MPa and 1166.52%, respectively. The mechanical properties of the PBAT mulch were greatly reduced after hydrothermal aging. Hydrothermal aging would reduce the light transmittance of PBAT mulch to visible light, while the hydrolysis of starch would cause the opposite result. The hydroxyl group in TPS would reduce the water vapor barrier performance of the PBAT mulch. After hydrothermal aging, the viscosity-average molecular weight of the PBAT mulch decreases and the surface of the PBAT mulch was destroyed, which meant that the PBAT mulch was hydrolyzed. FTIR showed that hydrothermal aging could cause the fracture of ester groups. The TG spectral curve showed that the proportion of TPS in PBAT mulch decreased after hydrothermal aging, which meant that TPS was more easily hydrolyzed than PBAT. The results would promote the wide application of PBAT mulch.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00396-024-05319-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00396-024-05319-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统农用地膜造成的微塑料污染已经暴露出来。应用可生物降解地膜是解决这一问题的潜在途径之一。因此,研究聚己二酸丁二醇酯(PBAT)地膜的水热老化行为具有重要意义。本研究制备了热塑性淀粉(TPS)、TPS/滑石粉和滑石粉填充的 PBAT 地膜。通过 28 天的水热老化试验,检测了 PBAT 地膜的机械性能、透光率、水蒸气阻隔性能、疏水性能、粘均分子量和特性。结果表明,原始的 TPS 填充 PBAT 地膜具有优异的机械性能,其拉伸强度和断裂伸长率分别达到 29.67 MPa 和 1166.52%。水热老化后,PBAT 地膜的机械性能大大降低。水热老化会降低 PBAT 地膜对可见光的透光率,而淀粉水解则会导致相反的结果。TPS 中的羟基会降低 PBAT 地膜的水蒸气阻隔性能。水热老化后,PBAT 地膜的粘均分子量降低,PBAT 地膜的表面被破坏,这意味着 PBAT 地膜被水解。傅立叶变换红外光谱显示,水热老化会导致酯基断裂。TG 光谱曲线显示,水热老化后 PBAT 地膜中 TPS 的比例下降,这意味着 TPS 比 PBAT 更容易水解。这些结果将促进 PBAT 地膜的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) mulch: influence of the hydrolysis resistance based on the different filling materials

Hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) mulch: influence of the hydrolysis resistance based on the different filling materials

The microplastic pollution caused by traditional agricultural mulch had been revealed. The application of biodegradable mulch is one of the potential ways to solve this problem. Therefore, it is significant to investigate the hydrothermal aging behavior of poly(butylene adipate-co-terephthalate) (PBAT) mulch. In this study, thermoplastic starch (TPS), TPS/talc, and talc-filled PBAT mulch were prepared. A 28-day hydrothermal aging test was conducted, and the mechanical properties, light transmission, water vapor barrier properties, hydrophobic performance, viscosity-average molecular weight, and characterization of the PBAT mulch were detected. The results showed that the original TPS-filled PBAT mulch had excellent mechanical properties, and its tensile strength and elongation at break reached 29.67 MPa and 1166.52%, respectively. The mechanical properties of the PBAT mulch were greatly reduced after hydrothermal aging. Hydrothermal aging would reduce the light transmittance of PBAT mulch to visible light, while the hydrolysis of starch would cause the opposite result. The hydroxyl group in TPS would reduce the water vapor barrier performance of the PBAT mulch. After hydrothermal aging, the viscosity-average molecular weight of the PBAT mulch decreases and the surface of the PBAT mulch was destroyed, which meant that the PBAT mulch was hydrolyzed. FTIR showed that hydrothermal aging could cause the fracture of ester groups. The TG spectral curve showed that the proportion of TPS in PBAT mulch decreased after hydrothermal aging, which meant that TPS was more easily hydrolyzed than PBAT. The results would promote the wide application of PBAT mulch.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信