神经源信号的动态变化是大脑可塑性的生物开关

IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING
João F. Moreira, Susana Solá
{"title":"神经源信号的动态变化是大脑可塑性的生物开关","authors":"João F. Moreira, Susana Solá","doi":"10.1007/s12015-024-10788-2","DOIUrl":null,"url":null,"abstract":"<p>The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain’s homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>Different signaling pathways responsible for signal integration of NSCs-secreted autocrine/paracrine signals: Numerous superficial receptors are stimulated upon contact with NSCs-secreted factors. Interestingly, this schematic representation of the different pathways shows how different signals often converge into the same pathway. This allows the NSC to adopt the correct behavior in response to external stimuli.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":"29 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity\",\"authors\":\"João F. Moreira, Susana Solá\",\"doi\":\"10.1007/s12015-024-10788-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain’s homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3><p>Different signaling pathways responsible for signal integration of NSCs-secreted autocrine/paracrine signals: Numerous superficial receptors are stimulated upon contact with NSCs-secreted factors. Interestingly, this schematic representation of the different pathways shows how different signals often converge into the same pathway. This allows the NSC to adopt the correct behavior in response to external stimuli.</p>\",\"PeriodicalId\":21955,\"journal\":{\"name\":\"Stem Cell Reviews and Reports\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reviews and Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12015-024-10788-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10788-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

上世纪中叶发现的成体神经发生被认为是神经科学领域最重要的突破之一。尽管存在争议,但这一发现塑造了我们的神经可塑性概念,彻底改变了我们看待大脑的方式。事实上,在发现成体神经发生之后,我们开始将大脑视为一种更具活力和高度适应性的东西。在神经源壁龛中,成体神经发生由神经干细胞(NSCs)支持。这些细胞具有一系列独特的特征,如长期处于静止状态,同时能主动感知周围环境并做出反应,从而影响多种过程,包括生成新的神经元和神经胶质细胞。因此,间叶干细胞可被视为大脑平衡的哨兵,能够替代受损细胞,同时分泌多种因子,恢复正常的大脑功能。此外,越来越多的事实证明,间充质干细胞在记忆形成和巩固过程中发挥着核心作用。在这篇综述中,我们将剖析间充质干细胞如何通过旁分泌和自分泌类型的作用影响周围环境。我们还将描述每种因子的作用机制。最后,我们将描述 NSCs 如何整合不同的、通常是对立的信号,以引导其命运。图解摘要 不同的信号通路负责 NSCs 分泌的自分泌/旁分泌信号的整合:与 NSCs 分泌的因子接触后,许多表层受体会受到刺激。有趣的是,不同通路的示意图显示了不同信号如何经常汇聚到同一通路中。这使得 NSC 能够对外界刺激做出正确的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity

Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity

The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain’s homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.

Graphical Abstract

Different signaling pathways responsible for signal integration of NSCs-secreted autocrine/paracrine signals: Numerous superficial receptors are stimulated upon contact with NSCs-secreted factors. Interestingly, this schematic representation of the different pathways shows how different signals often converge into the same pathway. This allows the NSC to adopt the correct behavior in response to external stimuli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Reviews and Reports
Stem Cell Reviews and Reports 医学-细胞生物学
CiteScore
9.30
自引率
4.20%
发文量
0
审稿时长
3 months
期刊介绍: The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication: i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field. ii) full length and short reports presenting original experimental work. iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics. iv) papers focused on diseases of stem cells. v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale. vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research. vii) letters to the editor and correspondence. In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on: i) the role of adult stem cells in tissue regeneration; ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development; iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells; iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis; v) the role of stem cells in aging processes and cancerogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信