风沙流中盐化粒子的垂直分布

IF 0.9 Q4 OPTICS
R. A. Gushchin, G. I. Gorchakov, A. V. Karpov, O. I. Datsenko
{"title":"风沙流中盐化粒子的垂直分布","authors":"R. A. Gushchin,&nbsp;G. I. Gorchakov,&nbsp;A. V. Karpov,&nbsp;O. I. Datsenko","doi":"10.1134/S1024856024700465","DOIUrl":null,"url":null,"abstract":"<p>Desertification and aridization of once-fertile areas is one of global environmental problems. To solve this problem, it is necessary to understand the dynamic and electrical processes in a wind-sand flux, which are currently understudied. Regularities in the vertical distribution of saltating particles in a windsand flux are ascertained based on experimental data from a desertified area and a wind channel. The effect of the surface wind speed in the desertified area on this distribution is studied. A piecewise exponential approximation of the vertical profiles of particle concentrations with a wind speed-independent height scale and a logarithmic concentration gradient in the lower saltation layer is suggested. The dependence of the lower saltation layer thickness and the height scale on the saltating particle size (100 to 800 μm) is derived for the mass flux of particles in this layer based on measurements of saltating particle flux profiles in the wind channel. The windsand flux parameters determined from measurements in the desertified area and in the wind channel well agree. Our results can be used for modeling the windsand flux dynamics.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical Distribution of Saltating Particles in a Windsand Flux\",\"authors\":\"R. A. Gushchin,&nbsp;G. I. Gorchakov,&nbsp;A. V. Karpov,&nbsp;O. I. Datsenko\",\"doi\":\"10.1134/S1024856024700465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Desertification and aridization of once-fertile areas is one of global environmental problems. To solve this problem, it is necessary to understand the dynamic and electrical processes in a wind-sand flux, which are currently understudied. Regularities in the vertical distribution of saltating particles in a windsand flux are ascertained based on experimental data from a desertified area and a wind channel. The effect of the surface wind speed in the desertified area on this distribution is studied. A piecewise exponential approximation of the vertical profiles of particle concentrations with a wind speed-independent height scale and a logarithmic concentration gradient in the lower saltation layer is suggested. The dependence of the lower saltation layer thickness and the height scale on the saltating particle size (100 to 800 μm) is derived for the mass flux of particles in this layer based on measurements of saltating particle flux profiles in the wind channel. The windsand flux parameters determined from measurements in the desertified area and in the wind channel well agree. Our results can be used for modeling the windsand flux dynamics.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 曾经肥沃的地区荒漠化和干旱化是全球环境问题之一。要解决这一问题,就必须了解风沙流中的动态和电过程,而目前对这些过程的研究还很不够。根据沙漠化地区和风道的实验数据,确定了风沙流中盐化颗粒垂直分布的规律性。研究了荒漠化地区的地表风速对这种分布的影响。提出了颗粒浓度垂直剖面的片断指数近似值,其高度尺度与风速无关,下盐化层的浓度梯度为对数。根据风道中盐化颗粒通量剖面的测量结果,得出了盐化层下部厚度和高度尺度与盐化颗粒大小(100 至 800 微米)的关系,以及该盐化层中颗粒的质量通量。在沙漠化地区和风道中测量得出的风沙通量参数非常吻合。我们的结果可用于风沙通量动态建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vertical Distribution of Saltating Particles in a Windsand Flux

Vertical Distribution of Saltating Particles in a Windsand Flux

Vertical Distribution of Saltating Particles in a Windsand Flux

Desertification and aridization of once-fertile areas is one of global environmental problems. To solve this problem, it is necessary to understand the dynamic and electrical processes in a wind-sand flux, which are currently understudied. Regularities in the vertical distribution of saltating particles in a windsand flux are ascertained based on experimental data from a desertified area and a wind channel. The effect of the surface wind speed in the desertified area on this distribution is studied. A piecewise exponential approximation of the vertical profiles of particle concentrations with a wind speed-independent height scale and a logarithmic concentration gradient in the lower saltation layer is suggested. The dependence of the lower saltation layer thickness and the height scale on the saltating particle size (100 to 800 μm) is derived for the mass flux of particles in this layer based on measurements of saltating particle flux profiles in the wind channel. The windsand flux parameters determined from measurements in the desertified area and in the wind channel well agree. Our results can be used for modeling the windsand flux dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信