{"title":"利用可解释的机器学习模型识别高光谱卫星图像中的云层","authors":"A. S. Minkin, O. V. Nikolaeva","doi":"10.1134/S1024856024700507","DOIUrl":null,"url":null,"abstract":"<p>Problem of developing algorithm based upon neutral networks and machine learning to find clouds on hyperspectral images are under consideration. It is required that the network is not a “black box,” but allows an analysis of the reasons for decision making and classification results. Presented hybrid model includes decision tree trained to overcast recognition (model 1) on pre-selected features of an image in combination with convolutional neural network (model 2). Model 2 uses the result of model 1 and brightness in a selected band of an image. Model 1 finds cloud cores, and model 2 finds cloud edges. Results of testing the hybrid model on data of HYPERION sensor are presented. Data obtained over three surface types (ocean, plant, and urban region) are considered. Overall accuracy, as well as commission and omission errors are assessed. It is shown that the hybrid model can find 85% cloud pixels, only if the neural network is trained on an image where the contrast attains a maximum in the same spectral band. The results of this work can be applied to solve the general problem of analyzing and processing multispectral satellite images and further in environmental science and monitoring of changes in vegetation, ocean and glaciers.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud Recognition in Hyperspectral Satellite Images Using an Explainable Machine Learning Model\",\"authors\":\"A. S. Minkin, O. V. Nikolaeva\",\"doi\":\"10.1134/S1024856024700507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Problem of developing algorithm based upon neutral networks and machine learning to find clouds on hyperspectral images are under consideration. It is required that the network is not a “black box,” but allows an analysis of the reasons for decision making and classification results. Presented hybrid model includes decision tree trained to overcast recognition (model 1) on pre-selected features of an image in combination with convolutional neural network (model 2). Model 2 uses the result of model 1 and brightness in a selected band of an image. Model 1 finds cloud cores, and model 2 finds cloud edges. Results of testing the hybrid model on data of HYPERION sensor are presented. Data obtained over three surface types (ocean, plant, and urban region) are considered. Overall accuracy, as well as commission and omission errors are assessed. It is shown that the hybrid model can find 85% cloud pixels, only if the neural network is trained on an image where the contrast attains a maximum in the same spectral band. The results of this work can be applied to solve the general problem of analyzing and processing multispectral satellite images and further in environmental science and monitoring of changes in vegetation, ocean and glaciers.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Cloud Recognition in Hyperspectral Satellite Images Using an Explainable Machine Learning Model
Problem of developing algorithm based upon neutral networks and machine learning to find clouds on hyperspectral images are under consideration. It is required that the network is not a “black box,” but allows an analysis of the reasons for decision making and classification results. Presented hybrid model includes decision tree trained to overcast recognition (model 1) on pre-selected features of an image in combination with convolutional neural network (model 2). Model 2 uses the result of model 1 and brightness in a selected band of an image. Model 1 finds cloud cores, and model 2 finds cloud edges. Results of testing the hybrid model on data of HYPERION sensor are presented. Data obtained over three surface types (ocean, plant, and urban region) are considered. Overall accuracy, as well as commission and omission errors are assessed. It is shown that the hybrid model can find 85% cloud pixels, only if the neural network is trained on an image where the contrast attains a maximum in the same spectral band. The results of this work can be applied to solve the general problem of analyzing and processing multispectral satellite images and further in environmental science and monitoring of changes in vegetation, ocean and glaciers.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.