{"title":"基于超声预处理和酶后处理的淀粉纳米颗粒:制备、优化和生物物理表征","authors":"Sahar Rastmanesh, Hoda Jafarizadeh‐Malmiri, Afshin Javadi, Navideh Anarjan","doi":"10.1002/star.202400095","DOIUrl":null,"url":null,"abstract":"Starch nanoparticles (SNPs), due to their minimum particle size and maximum surface to volume ratio do not have starch limitations such as low solubility and digestibility. SNPs in colloidal form were enzymatically produced using enzyme of α‐amylase in combination toultrasinication technique to accomplished SNPs gelatinization. Results indicated that SNPs with smallest particle size (109 nm) and polydispersity index (0.560), and highest zeta potential (−32.16 mV) and antioxidant activity (30%) values was obtained using 2.10 mL enzyme and ultrasonication time of 69 s. SNPs in powder form were produced using obtained optimum conditions and a laboratory freeze dryer with chamber temperature and pressure of −70 °C and 100 Pa, for 24 h, and characterized Results indicated that the provided native starch had particle size of ranging 6 to 10 µm with zeta potential value of −4.50 mV, prepared SNPs powder had spherical shape and flat surface with mean particle size, zeta potential and specific surface area values of 105 nm, −26.7 mV and 4.70 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup>, respectively. Furthermore, oil separation time for the emulsions having starch and powder of SNPs, were 43 and 297 s, respectively. While, for the sample without emulsifier (control), this time was 22 s.","PeriodicalId":501569,"journal":{"name":"Starch","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Starch Nanoparticles Based on Ultrasonication Pretreatment and Enzyme Posttreatment: Preparation, Optimization, and Biophysical Characterization\",\"authors\":\"Sahar Rastmanesh, Hoda Jafarizadeh‐Malmiri, Afshin Javadi, Navideh Anarjan\",\"doi\":\"10.1002/star.202400095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starch nanoparticles (SNPs), due to their minimum particle size and maximum surface to volume ratio do not have starch limitations such as low solubility and digestibility. SNPs in colloidal form were enzymatically produced using enzyme of α‐amylase in combination toultrasinication technique to accomplished SNPs gelatinization. Results indicated that SNPs with smallest particle size (109 nm) and polydispersity index (0.560), and highest zeta potential (−32.16 mV) and antioxidant activity (30%) values was obtained using 2.10 mL enzyme and ultrasonication time of 69 s. SNPs in powder form were produced using obtained optimum conditions and a laboratory freeze dryer with chamber temperature and pressure of −70 °C and 100 Pa, for 24 h, and characterized Results indicated that the provided native starch had particle size of ranging 6 to 10 µm with zeta potential value of −4.50 mV, prepared SNPs powder had spherical shape and flat surface with mean particle size, zeta potential and specific surface area values of 105 nm, −26.7 mV and 4.70 m<jats:sup>2</jats:sup> g<jats:sup>−1</jats:sup>, respectively. Furthermore, oil separation time for the emulsions having starch and powder of SNPs, were 43 and 297 s, respectively. While, for the sample without emulsifier (control), this time was 22 s.\",\"PeriodicalId\":501569,\"journal\":{\"name\":\"Starch\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Starch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/star.202400095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Starch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/star.202400095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
淀粉纳米颗粒(SNPs)具有最小的粒径和最大的表面体积比,因此不会受到淀粉溶解度和消化率低等限制。通过使用α-淀粉酶酶解胶体形式的SNP,并结合土法糖化技术,完成了SNP的糊化。结果表明,使用 2.10 mL 酶和 69 秒超声时间制得的 SNP 粒径(109 nm)和多分散指数(0.560)最小,Zeta 电位(-32.16 mV)和抗氧化活性(30%)最高。利用所获得的最佳条件和实验室冷冻干燥机(室温和压力分别为 -70 °C 和 100 Pa),在 24 小时内制备出粉末状 SNP,并对其进行表征 结果表明,所提供的原生淀粉的粒径为 6 至 10 µm,zeta 电位值为 -4.50 mV;制备的 SNP 粉末呈球形,表面平坦,平均粒径、zeta 电位和比表面积值分别为 105 nm、-26.7 mV 和 4.70 m2 g-1。此外,含有淀粉和 SNP 粉末的乳液的油分离时间分别为 43 秒和 297 秒。而不含乳化剂的样品(对照组)的分离时间为 22 秒。
Starch Nanoparticles Based on Ultrasonication Pretreatment and Enzyme Posttreatment: Preparation, Optimization, and Biophysical Characterization
Starch nanoparticles (SNPs), due to their minimum particle size and maximum surface to volume ratio do not have starch limitations such as low solubility and digestibility. SNPs in colloidal form were enzymatically produced using enzyme of α‐amylase in combination toultrasinication technique to accomplished SNPs gelatinization. Results indicated that SNPs with smallest particle size (109 nm) and polydispersity index (0.560), and highest zeta potential (−32.16 mV) and antioxidant activity (30%) values was obtained using 2.10 mL enzyme and ultrasonication time of 69 s. SNPs in powder form were produced using obtained optimum conditions and a laboratory freeze dryer with chamber temperature and pressure of −70 °C and 100 Pa, for 24 h, and characterized Results indicated that the provided native starch had particle size of ranging 6 to 10 µm with zeta potential value of −4.50 mV, prepared SNPs powder had spherical shape and flat surface with mean particle size, zeta potential and specific surface area values of 105 nm, −26.7 mV and 4.70 m2 g−1, respectively. Furthermore, oil separation time for the emulsions having starch and powder of SNPs, were 43 and 297 s, respectively. While, for the sample without emulsifier (control), this time was 22 s.