具有分数耗散的二维不可压缩多流体力学方程系统的稳定性

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Wen Feng, Weinan Wang, Jiahong Wu
{"title":"具有分数耗散的二维不可压缩多流体力学方程系统的稳定性","authors":"Wen Feng,&nbsp;Weinan Wang,&nbsp;Jiahong Wu","doi":"10.1007/s00021-024-00892-1","DOIUrl":null,"url":null,"abstract":"<div><p>Several fundamental problems on the 2D magnetohydrodynamic (MHD) equations with only magnetic diffusion (no velocity dissipation) remain open, especialy in the case when the spatial domain is the whole space <span>\\({\\mathbb {R}}^2\\)</span>. This paper establishes that, near a background magnetic field, any fractional dissipation in one direction in the velocity equation would allow us to establish the global existence and stability for perturbations near the background. The magnetic diffusion here is not required to be given by the standard Laplacian operator but any general fractional Laplacian with positive power.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability for a System of the 2D Incompressible MHD Equations with Fractional Dissipation\",\"authors\":\"Wen Feng,&nbsp;Weinan Wang,&nbsp;Jiahong Wu\",\"doi\":\"10.1007/s00021-024-00892-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several fundamental problems on the 2D magnetohydrodynamic (MHD) equations with only magnetic diffusion (no velocity dissipation) remain open, especialy in the case when the spatial domain is the whole space <span>\\\\({\\\\mathbb {R}}^2\\\\)</span>. This paper establishes that, near a background magnetic field, any fractional dissipation in one direction in the velocity equation would allow us to establish the global existence and stability for perturbations near the background. The magnetic diffusion here is not required to be given by the standard Laplacian operator but any general fractional Laplacian with positive power.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00892-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00892-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

关于仅有磁扩散(无速度耗散)的二维磁流体力学(MHD)方程的几个基本问题仍未解决,特别是在空间域为整个空间({\mathbb {R}}^2\ )的情况下。本文证明,在背景磁场附近,速度方程中一个方向上的任何分数耗散都能让我们建立起背景附近扰动的全局存在性和稳定性。这里的磁扩散不需要由标准拉普拉斯算子给出,而是由任何具有正幂次的一般分数拉普拉斯算子给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability for a System of the 2D Incompressible MHD Equations with Fractional Dissipation

Several fundamental problems on the 2D magnetohydrodynamic (MHD) equations with only magnetic diffusion (no velocity dissipation) remain open, especialy in the case when the spatial domain is the whole space \({\mathbb {R}}^2\). This paper establishes that, near a background magnetic field, any fractional dissipation in one direction in the velocity equation would allow us to establish the global existence and stability for perturbations near the background. The magnetic diffusion here is not required to be given by the standard Laplacian operator but any general fractional Laplacian with positive power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信