{"title":"关于二维库拉莫托-西瓦申斯基方程中大规模增长的稳定性的评论","authors":"Adam Larios, Vincent R. Martinez","doi":"10.1007/s00021-024-00890-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, some elementary observations are is made regarding the behavior of solutions to the two-dimensional curl-free Burgers equation which suggests the distinguished role played by the scalar divergence field in determining the dynamics of the solution. These observations inspire a new divergence-based regularity condition for the two-dimensional Kuramoto–Sivashinsky equation (KSE) that provides conceptual clarity to the nature of the potential blow-up mechanism for this system. The relation of this regularity criterion to the Ladyzhenskaya–Prodi–Serrin-type criterion for the KSE is also established, thus providing the basis for the development of an alternative framework of regularity criterion for this equation based solely on the low-mode behavior of its solutions. The article concludes by applying these ideas to identify a conceptually simple modification of KSE that yields globally regular solutions, as well as providing a straightforward verification of this regularity criterion to establish global regularity of solutions to the 2D Burgers–Sivashinsky equation. The proofs are direct, elementary, and concise.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on the Stabilization of Large-Scale Growth in the 2D Kuramoto–Sivashinsky Equation\",\"authors\":\"Adam Larios, Vincent R. Martinez\",\"doi\":\"10.1007/s00021-024-00890-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, some elementary observations are is made regarding the behavior of solutions to the two-dimensional curl-free Burgers equation which suggests the distinguished role played by the scalar divergence field in determining the dynamics of the solution. These observations inspire a new divergence-based regularity condition for the two-dimensional Kuramoto–Sivashinsky equation (KSE) that provides conceptual clarity to the nature of the potential blow-up mechanism for this system. The relation of this regularity criterion to the Ladyzhenskaya–Prodi–Serrin-type criterion for the KSE is also established, thus providing the basis for the development of an alternative framework of regularity criterion for this equation based solely on the low-mode behavior of its solutions. The article concludes by applying these ideas to identify a conceptually simple modification of KSE that yields globally regular solutions, as well as providing a straightforward verification of this regularity criterion to establish global regularity of solutions to the 2D Burgers–Sivashinsky equation. The proofs are direct, elementary, and concise.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00890-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00890-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Remarks on the Stabilization of Large-Scale Growth in the 2D Kuramoto–Sivashinsky Equation
In this article, some elementary observations are is made regarding the behavior of solutions to the two-dimensional curl-free Burgers equation which suggests the distinguished role played by the scalar divergence field in determining the dynamics of the solution. These observations inspire a new divergence-based regularity condition for the two-dimensional Kuramoto–Sivashinsky equation (KSE) that provides conceptual clarity to the nature of the potential blow-up mechanism for this system. The relation of this regularity criterion to the Ladyzhenskaya–Prodi–Serrin-type criterion for the KSE is also established, thus providing the basis for the development of an alternative framework of regularity criterion for this equation based solely on the low-mode behavior of its solutions. The article concludes by applying these ideas to identify a conceptually simple modification of KSE that yields globally regular solutions, as well as providing a straightforward verification of this regularity criterion to establish global regularity of solutions to the 2D Burgers–Sivashinsky equation. The proofs are direct, elementary, and concise.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.