{"title":"水热碳化杜鹃花生物质衍生碳,作为潜在的可持续材料用于农业植物的高效光合作用和电化学电极材料","authors":"Tanatsaparn Tithito, Wannarat Phonphoem, Tanawut Meekati, Jedsada Sodtipinta, Weeraphat Pon-On","doi":"10.1007/s13399-024-06101-3","DOIUrl":null,"url":null,"abstract":"<p>Using biomass to synthesize carbon-based materials has garnered significant interest due to its broad range of applications. Additionally, biomass is a sustainable source with the potential to produce various carbon products. However, the development of practical and efficient processes to enable the high-efficiency utilization of biomass is increasingly attracting attention. To maximize this potential, biomass-derived carbon dots (BioCDots) and hydrochar carbons (HCs) were obtained through a single-step hydrothermal carbonization (HTC) process (140–200 °C for 3 h) from <i>Azolla</i> biomass, without any activation. The physicochemical properties, plant photosynthesis, and electrochemical behavior of the synthesized carbon were evaluated. The BioCDots exhibited a small size and emitted a strong blue fluorescent under UV light. A quantum yield of 20.97% was attained at 200 °C for 3 h. Meanwhile, the obtained residual solids (HCs) exhibited micro/mesopore structure with surface area, pore volume, and average pore diameter of 81.20 m<sup>2</sup>/g, 0.3963 cm<sup>3</sup>/g, and 17.18 nm, respectively. For agricultural applications, BioCDots demonstrated a dose-dependent effect on seed germination and could enhance photosynthesis activity in tomato plants, increasing chlorophyll and carotenoid content by approximately 14–35% and 17–31%, respectively, under foliar application at concentrations of 50–300 µg/mL. The HCs revealed a noticeable nitrogen-self-doped hydrochar carbon (NHCs) and delivered a specific capacitance of 83.91 Fg<sup>−1</sup> at 0.1 Ag<sup>−1</sup> and retains 72% at a current density of 5 Ag<sup>−1</sup> in 1 M H<sub>2</sub>SO<sub>4</sub> aqueous solution. Promising preliminary results exhibit great potential of BioCDots and HCs from <i>Azolla</i> biomass as foliar agents for stimulating agricultural plant growth and provided a novel proper carbon electrode materials selection for energy storage applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"8 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal carbonization of Azolla biomass for derived carbon as potential sustainable materials for efficient photosynthesis in agricultural plants and as electrochemical electrode materials\",\"authors\":\"Tanatsaparn Tithito, Wannarat Phonphoem, Tanawut Meekati, Jedsada Sodtipinta, Weeraphat Pon-On\",\"doi\":\"10.1007/s13399-024-06101-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using biomass to synthesize carbon-based materials has garnered significant interest due to its broad range of applications. Additionally, biomass is a sustainable source with the potential to produce various carbon products. However, the development of practical and efficient processes to enable the high-efficiency utilization of biomass is increasingly attracting attention. To maximize this potential, biomass-derived carbon dots (BioCDots) and hydrochar carbons (HCs) were obtained through a single-step hydrothermal carbonization (HTC) process (140–200 °C for 3 h) from <i>Azolla</i> biomass, without any activation. The physicochemical properties, plant photosynthesis, and electrochemical behavior of the synthesized carbon were evaluated. The BioCDots exhibited a small size and emitted a strong blue fluorescent under UV light. A quantum yield of 20.97% was attained at 200 °C for 3 h. Meanwhile, the obtained residual solids (HCs) exhibited micro/mesopore structure with surface area, pore volume, and average pore diameter of 81.20 m<sup>2</sup>/g, 0.3963 cm<sup>3</sup>/g, and 17.18 nm, respectively. For agricultural applications, BioCDots demonstrated a dose-dependent effect on seed germination and could enhance photosynthesis activity in tomato plants, increasing chlorophyll and carotenoid content by approximately 14–35% and 17–31%, respectively, under foliar application at concentrations of 50–300 µg/mL. The HCs revealed a noticeable nitrogen-self-doped hydrochar carbon (NHCs) and delivered a specific capacitance of 83.91 Fg<sup>−1</sup> at 0.1 Ag<sup>−1</sup> and retains 72% at a current density of 5 Ag<sup>−1</sup> in 1 M H<sub>2</sub>SO<sub>4</sub> aqueous solution. Promising preliminary results exhibit great potential of BioCDots and HCs from <i>Azolla</i> biomass as foliar agents for stimulating agricultural plant growth and provided a novel proper carbon electrode materials selection for energy storage applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06101-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06101-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hydrothermal carbonization of Azolla biomass for derived carbon as potential sustainable materials for efficient photosynthesis in agricultural plants and as electrochemical electrode materials
Using biomass to synthesize carbon-based materials has garnered significant interest due to its broad range of applications. Additionally, biomass is a sustainable source with the potential to produce various carbon products. However, the development of practical and efficient processes to enable the high-efficiency utilization of biomass is increasingly attracting attention. To maximize this potential, biomass-derived carbon dots (BioCDots) and hydrochar carbons (HCs) were obtained through a single-step hydrothermal carbonization (HTC) process (140–200 °C for 3 h) from Azolla biomass, without any activation. The physicochemical properties, plant photosynthesis, and electrochemical behavior of the synthesized carbon were evaluated. The BioCDots exhibited a small size and emitted a strong blue fluorescent under UV light. A quantum yield of 20.97% was attained at 200 °C for 3 h. Meanwhile, the obtained residual solids (HCs) exhibited micro/mesopore structure with surface area, pore volume, and average pore diameter of 81.20 m2/g, 0.3963 cm3/g, and 17.18 nm, respectively. For agricultural applications, BioCDots demonstrated a dose-dependent effect on seed germination and could enhance photosynthesis activity in tomato plants, increasing chlorophyll and carotenoid content by approximately 14–35% and 17–31%, respectively, under foliar application at concentrations of 50–300 µg/mL. The HCs revealed a noticeable nitrogen-self-doped hydrochar carbon (NHCs) and delivered a specific capacitance of 83.91 Fg−1 at 0.1 Ag−1 and retains 72% at a current density of 5 Ag−1 in 1 M H2SO4 aqueous solution. Promising preliminary results exhibit great potential of BioCDots and HCs from Azolla biomass as foliar agents for stimulating agricultural plant growth and provided a novel proper carbon electrode materials selection for energy storage applications.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.