按顺序利用荚果(PLP)开发果胶和生物乙醇:生物精炼方法

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
Saroja Pasupathi, Vigneshwaran Pandiyan, Tharunkumar Ramasamy, Sameeha Syed Abdul Rahman, Arunachalam Jothi, Sugumaran Karuppiah
{"title":"按顺序利用荚果(PLP)开发果胶和生物乙醇:生物精炼方法","authors":"Saroja Pasupathi, Vigneshwaran Pandiyan, Tharunkumar Ramasamy, Sameeha Syed Abdul Rahman, Arunachalam Jothi, Sugumaran Karuppiah","doi":"10.1007/s13399-024-06052-9","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the valorization approach for transforming waste into wealth has attracted researchers to develop value-added products. This work is designed to valorize <i>Phaseolus lunatus</i> pod (PLP), vegetable waste, to extract pectin and bioethanol production through microbial fermentation. With the conventional method, the extraction of pectin from <i>Phaseolus lunatus</i> pod (PLP) was optimized using statistical and artificial neural network techniques. The Box–Behnken design of experiments and artificial neural network design were employed to optimize the extraction process and effect of process variables, namely, temperature (50–100 °C), liquid-to-solid ratio (LSR 10–40 mL/g), extraction time (30–120 min), and concentration of citric acid (30–60% w/v). The maximum yield of crude pectin (0.47 g/g) resulted from optimized process variables such as temperature 75 °C, LSR 40 mL/g, time 30 min, and citric acid 45 (% w/v). The physicochemical composition, such as carbohydrate content, protein, total phenolic content, esterification degree, methoxyl content, and techno-functional properties, was determined. The structural property, functional group analysis, thermal stability, and surface morphology of extracted pectin from PLP under optimum conditions were investigated using <sup>1</sup>H-NMR spectroscopy, FTIR spectroscopy, TGA, and SEM analysis. The hydrolysis obtained from residual biomass was subjected to bioethanol production through microbial fermentation with a yield of 0.11 g/g. Based on the findings, the <i>Phaseolus lunatus</i> pod (PLP) could be explored as a promising, cost-effective alternative for developing value-added products in food and biofuel applications.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"193 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential utilization of Phaseolus lunatus pod (PLP) for the development of pectin and bioethanol: biorefinery approach\",\"authors\":\"Saroja Pasupathi, Vigneshwaran Pandiyan, Tharunkumar Ramasamy, Sameeha Syed Abdul Rahman, Arunachalam Jothi, Sugumaran Karuppiah\",\"doi\":\"10.1007/s13399-024-06052-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the valorization approach for transforming waste into wealth has attracted researchers to develop value-added products. This work is designed to valorize <i>Phaseolus lunatus</i> pod (PLP), vegetable waste, to extract pectin and bioethanol production through microbial fermentation. With the conventional method, the extraction of pectin from <i>Phaseolus lunatus</i> pod (PLP) was optimized using statistical and artificial neural network techniques. The Box–Behnken design of experiments and artificial neural network design were employed to optimize the extraction process and effect of process variables, namely, temperature (50–100 °C), liquid-to-solid ratio (LSR 10–40 mL/g), extraction time (30–120 min), and concentration of citric acid (30–60% w/v). The maximum yield of crude pectin (0.47 g/g) resulted from optimized process variables such as temperature 75 °C, LSR 40 mL/g, time 30 min, and citric acid 45 (% w/v). The physicochemical composition, such as carbohydrate content, protein, total phenolic content, esterification degree, methoxyl content, and techno-functional properties, was determined. The structural property, functional group analysis, thermal stability, and surface morphology of extracted pectin from PLP under optimum conditions were investigated using <sup>1</sup>H-NMR spectroscopy, FTIR spectroscopy, TGA, and SEM analysis. The hydrolysis obtained from residual biomass was subjected to bioethanol production through microbial fermentation with a yield of 0.11 g/g. Based on the findings, the <i>Phaseolus lunatus</i> pod (PLP) could be explored as a promising, cost-effective alternative for developing value-added products in food and biofuel applications.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06052-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06052-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,变废为宝的增值方法吸引了研究人员开发增值产品。本研究旨在通过微生物发酵提取果胶和生产生物乙醇,实现蔬菜废弃物豆荚(PLP)的价值化。在传统方法的基础上,利用统计和人工神经网络技术对从荚果中提取果胶的方法进行了优化。采用盒-贝肯实验设计法和人工神经网络设计法优化提取工艺和工艺变量的影响,即温度(50-100 °C)、液固比(LSR 10-40 mL/g)、提取时间(30-120 分钟)和柠檬酸浓度(30-60% w/v)。温度 75 °C、LSR 40 mL/g、时间 30 分钟和柠檬酸浓度 45 (% w/v)等工艺变量的优化使粗果胶产量最大(0.47 g/g)。测定了理化成分,如碳水化合物含量、蛋白质、总酚含量、酯化度、甲氧基含量和技术功能特性。利用 1H-NMR 光谱、傅立叶变换红外光谱、TGA 和 SEM 分析法研究了在最佳条件下从 PLP 中提取的果胶的结构特性、官能团分析、热稳定性和表面形态。残留生物质水解后通过微生物发酵生产生物乙醇,产量为 0.11 克/克。根据这些研究结果,可将月见草荚果(PLP)作为一种有前途、具有成本效益的替代品,用于开发食品和生物燃料应用领域的增值产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sequential utilization of Phaseolus lunatus pod (PLP) for the development of pectin and bioethanol: biorefinery approach

Sequential utilization of Phaseolus lunatus pod (PLP) for the development of pectin and bioethanol: biorefinery approach

In recent years, the valorization approach for transforming waste into wealth has attracted researchers to develop value-added products. This work is designed to valorize Phaseolus lunatus pod (PLP), vegetable waste, to extract pectin and bioethanol production through microbial fermentation. With the conventional method, the extraction of pectin from Phaseolus lunatus pod (PLP) was optimized using statistical and artificial neural network techniques. The Box–Behnken design of experiments and artificial neural network design were employed to optimize the extraction process and effect of process variables, namely, temperature (50–100 °C), liquid-to-solid ratio (LSR 10–40 mL/g), extraction time (30–120 min), and concentration of citric acid (30–60% w/v). The maximum yield of crude pectin (0.47 g/g) resulted from optimized process variables such as temperature 75 °C, LSR 40 mL/g, time 30 min, and citric acid 45 (% w/v). The physicochemical composition, such as carbohydrate content, protein, total phenolic content, esterification degree, methoxyl content, and techno-functional properties, was determined. The structural property, functional group analysis, thermal stability, and surface morphology of extracted pectin from PLP under optimum conditions were investigated using 1H-NMR spectroscopy, FTIR spectroscopy, TGA, and SEM analysis. The hydrolysis obtained from residual biomass was subjected to bioethanol production through microbial fermentation with a yield of 0.11 g/g. Based on the findings, the Phaseolus lunatus pod (PLP) could be explored as a promising, cost-effective alternative for developing value-added products in food and biofuel applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信