K. M. Prasannakumaran, Mohammed Abdullah Bareen, Jatindra K. Sahu, Vijayaraghavan M. Chariar
{"title":"紫穗槐鞘工业废物价值化:资源绘图、理化参数和重金属分析","authors":"K. M. Prasannakumaran, Mohammed Abdullah Bareen, Jatindra K. Sahu, Vijayaraghavan M. Chariar","doi":"10.1007/s13399-024-06055-6","DOIUrl":null,"url":null,"abstract":"<p>India’s areca nut tree-based processing industry yields a significant annual waste volume estimated between 4.5 and 5.4 million tons in the form of areca sheaths. Efforts to repurpose these sheaths as sustainable alternatives to plastic materials like cups, plates, and boxes are gaining traction, aiming to reduce the environmental impact of such waste. Using Geographic Information System (GIS) technology, this research investigates the factors influencing the geographic distribution of enterprises utilizing areca sheath-based products across diverse Indian regions. The physiochemical properties of discarded areca sheaths and various by products from small and medium enterprises were thoroughly examined. The analysis uncovers substantial potential in harnessing areca waste resources. Findings from characterization studies reveal a notable abundance of fiber content, approximately 35.14 ± 1.25%, while exhibiting relatively lower levels of protein (around 3.45 ± 0.78), ether extract (roughly 2.71 ± 0.56), and a total phenolic content of 2.72 ± 0.54 mg GAE per gram. Furthermore, the study employs ICP-MS to delve into the mineral elements and heavy metal contents within the ASW. The sequence of macro factors observed in the analysis followed the order: K > Ca > P > Mg > S > Mn > Zn > Na > Fe > B > Cu. Distinct Fe, Mn, Zn, and B concentrations were identified, ranging between 2376 and 72.33 μg·g<sup>−1</sup>. This research illuminates the environmental implications of these wastes and emphasizes potential avenues for recycling and reusing, advocating for a more sustainable approach to managing agricultural byproducts.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"6 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Areca sheath industrial waste valorization: resource mapping, physiochemical parameters, and heavy metal analysis\",\"authors\":\"K. M. Prasannakumaran, Mohammed Abdullah Bareen, Jatindra K. Sahu, Vijayaraghavan M. Chariar\",\"doi\":\"10.1007/s13399-024-06055-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>India’s areca nut tree-based processing industry yields a significant annual waste volume estimated between 4.5 and 5.4 million tons in the form of areca sheaths. Efforts to repurpose these sheaths as sustainable alternatives to plastic materials like cups, plates, and boxes are gaining traction, aiming to reduce the environmental impact of such waste. Using Geographic Information System (GIS) technology, this research investigates the factors influencing the geographic distribution of enterprises utilizing areca sheath-based products across diverse Indian regions. The physiochemical properties of discarded areca sheaths and various by products from small and medium enterprises were thoroughly examined. The analysis uncovers substantial potential in harnessing areca waste resources. Findings from characterization studies reveal a notable abundance of fiber content, approximately 35.14 ± 1.25%, while exhibiting relatively lower levels of protein (around 3.45 ± 0.78), ether extract (roughly 2.71 ± 0.56), and a total phenolic content of 2.72 ± 0.54 mg GAE per gram. Furthermore, the study employs ICP-MS to delve into the mineral elements and heavy metal contents within the ASW. The sequence of macro factors observed in the analysis followed the order: K > Ca > P > Mg > S > Mn > Zn > Na > Fe > B > Cu. Distinct Fe, Mn, Zn, and B concentrations were identified, ranging between 2376 and 72.33 μg·g<sup>−1</sup>. This research illuminates the environmental implications of these wastes and emphasizes potential avenues for recycling and reusing, advocating for a more sustainable approach to managing agricultural byproducts.</p>\",\"PeriodicalId\":488,\"journal\":{\"name\":\"Biomass Conversion and Biorefinery\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass Conversion and Biorefinery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13399-024-06055-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06055-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
印度以芦卡果树为基础的加工业每年产生大量芦卡果鞘形式的废物,估计在 450 万吨到 540 万吨之间。为了减少这些废弃物对环境的影响,人们正在努力将这些鞘重新用作塑料杯、盘子和盒子等塑料材料的可持续替代品。本研究利用地理信息系统(GIS)技术,调查了影响印度不同地区利用山苍子鞘产品的企业地理分布的因素。对中小型企业丢弃的山苍子鞘和各种副产品的理化特性进行了深入研究。分析揭示了利用云英树废弃资源的巨大潜力。表征研究结果表明,纤维含量显著丰富,约为 35.14 ± 1.25%,而蛋白质(约 3.45 ± 0.78)、醚提取物(约 2.71 ± 0.56)和总酚含量相对较低,为每克 2.72 ± 0.54 毫克 GAE。此外,该研究还采用了 ICP-MS 技术,以深入研究 ASW 中的矿物元素和重金属含量。分析中观察到的宏观因子顺序如下K > Ca > P > Mg > S > Mn > Zn > Na > Fe > B > Cu。确定了不同的铁、锰、锌和硼浓度,介于 2376 和 72.33 μg-g-1 之间。这项研究揭示了这些废物对环境的影响,并强调了回收和再利用的潜在途径,提倡采用更可持续的方法来管理农业副产品。
Areca sheath industrial waste valorization: resource mapping, physiochemical parameters, and heavy metal analysis
India’s areca nut tree-based processing industry yields a significant annual waste volume estimated between 4.5 and 5.4 million tons in the form of areca sheaths. Efforts to repurpose these sheaths as sustainable alternatives to plastic materials like cups, plates, and boxes are gaining traction, aiming to reduce the environmental impact of such waste. Using Geographic Information System (GIS) technology, this research investigates the factors influencing the geographic distribution of enterprises utilizing areca sheath-based products across diverse Indian regions. The physiochemical properties of discarded areca sheaths and various by products from small and medium enterprises were thoroughly examined. The analysis uncovers substantial potential in harnessing areca waste resources. Findings from characterization studies reveal a notable abundance of fiber content, approximately 35.14 ± 1.25%, while exhibiting relatively lower levels of protein (around 3.45 ± 0.78), ether extract (roughly 2.71 ± 0.56), and a total phenolic content of 2.72 ± 0.54 mg GAE per gram. Furthermore, the study employs ICP-MS to delve into the mineral elements and heavy metal contents within the ASW. The sequence of macro factors observed in the analysis followed the order: K > Ca > P > Mg > S > Mn > Zn > Na > Fe > B > Cu. Distinct Fe, Mn, Zn, and B concentrations were identified, ranging between 2376 and 72.33 μg·g−1. This research illuminates the environmental implications of these wastes and emphasizes potential avenues for recycling and reusing, advocating for a more sustainable approach to managing agricultural byproducts.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.