{"title":"用于 3D 物体检测的鲁棒 3D 唯一描述符","authors":"Piyush Joshi, Alireza Rastegarpanah, Rustam Stolkin","doi":"10.1007/s10044-024-01326-4","DOIUrl":null,"url":null,"abstract":"<p>3D object recognition techniques based on local surface features are widely used for robust recognition. This paper proposes a 3D object recognition technique named 3DU using local features computed based on the uniqueness of keypoints. The technique first transforms 3D keypoints into another 3D space using Local Reference Frame. This transformation helps to find a list of probable matched keypoints of a query keypoint. Further, the proposed uniqueness-based descriptor rejects false matches to obtain the best match from the list. The proposed technique is validated by experiments on the Bologna dataset and achieved 100% recognition rate. In real-time scenarios, scenes obtained by an RGBD camera primarily consist of point density variation, cluttered surfaces, and occlusions. Most of the 3D descriptors have not been validated on such scenes in literature. We have analyzed 3DU and top-rated techniques on three RGBD datasets (dataset proposed in this paper, Challenge and Willow datasets). The results obtained by experiments on the proposed dataset show that the top-rated techniques have failed to handle RGBD data and 3DU has outperformed all compared techniques. The inferior performance of all techniques on complex datasets such as Challenge and Willow has elicited a need to develop robust training-free recognition techniques. The proposed dataset and code of the proposed technique 3DU are openly available in Mendeley (anonymously). http://dx.doi.org/10.17632/rfvzy9jn5v.1.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust 3D unique descriptor for 3D object detection\",\"authors\":\"Piyush Joshi, Alireza Rastegarpanah, Rustam Stolkin\",\"doi\":\"10.1007/s10044-024-01326-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>3D object recognition techniques based on local surface features are widely used for robust recognition. This paper proposes a 3D object recognition technique named 3DU using local features computed based on the uniqueness of keypoints. The technique first transforms 3D keypoints into another 3D space using Local Reference Frame. This transformation helps to find a list of probable matched keypoints of a query keypoint. Further, the proposed uniqueness-based descriptor rejects false matches to obtain the best match from the list. The proposed technique is validated by experiments on the Bologna dataset and achieved 100% recognition rate. In real-time scenarios, scenes obtained by an RGBD camera primarily consist of point density variation, cluttered surfaces, and occlusions. Most of the 3D descriptors have not been validated on such scenes in literature. We have analyzed 3DU and top-rated techniques on three RGBD datasets (dataset proposed in this paper, Challenge and Willow datasets). The results obtained by experiments on the proposed dataset show that the top-rated techniques have failed to handle RGBD data and 3DU has outperformed all compared techniques. The inferior performance of all techniques on complex datasets such as Challenge and Willow has elicited a need to develop robust training-free recognition techniques. The proposed dataset and code of the proposed technique 3DU are openly available in Mendeley (anonymously). http://dx.doi.org/10.17632/rfvzy9jn5v.1.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01326-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01326-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A robust 3D unique descriptor for 3D object detection
3D object recognition techniques based on local surface features are widely used for robust recognition. This paper proposes a 3D object recognition technique named 3DU using local features computed based on the uniqueness of keypoints. The technique first transforms 3D keypoints into another 3D space using Local Reference Frame. This transformation helps to find a list of probable matched keypoints of a query keypoint. Further, the proposed uniqueness-based descriptor rejects false matches to obtain the best match from the list. The proposed technique is validated by experiments on the Bologna dataset and achieved 100% recognition rate. In real-time scenarios, scenes obtained by an RGBD camera primarily consist of point density variation, cluttered surfaces, and occlusions. Most of the 3D descriptors have not been validated on such scenes in literature. We have analyzed 3DU and top-rated techniques on three RGBD datasets (dataset proposed in this paper, Challenge and Willow datasets). The results obtained by experiments on the proposed dataset show that the top-rated techniques have failed to handle RGBD data and 3DU has outperformed all compared techniques. The inferior performance of all techniques on complex datasets such as Challenge and Willow has elicited a need to develop robust training-free recognition techniques. The proposed dataset and code of the proposed technique 3DU are openly available in Mendeley (anonymously). http://dx.doi.org/10.17632/rfvzy9jn5v.1.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.