动态表面粗糙度对雪堆建模有何影响?

IF 1.5 4区 地球科学 Q3 ECOLOGY
Jessica E. Sanow , Steven R. Fassnacht , Kazuyoshi Suzuki
{"title":"动态表面粗糙度对雪堆建模有何影响?","authors":"Jessica E. Sanow ,&nbsp;Steven R. Fassnacht ,&nbsp;Kazuyoshi Suzuki","doi":"10.1016/j.polar.2024.101110","DOIUrl":null,"url":null,"abstract":"<div><p>The SNOWPACK model is a cryosphere model which incorporates several environmental model parameters, one of which being the aerodynamic roughness length (<em>z</em><sub><em>0</em></sub>). The <em>z</em><sub><em>0</em></sub> is considered a static parameter, however, research has shown that the <em>z</em><sub><em>0</em></sub> of the surface is variable due to the changing nature of the snowpack surface throughout the winter season. This study highlights the sensitivity of the <em>z</em><sub><em>0</em></sub> within the SNOWPACK model based on the outputs of sublimation, SWE, and sensible heat. The <em>z</em><sub><em>0</em></sub> values were calculated in two ways, anemometrically (<em>z</em><sub><em>0-A</em></sub>), using a wind profile, and geometrically (<em>z</em><sub><em>0-G</em></sub>), measuring surface geometry. Calculated <em>z</em><sub><em>0-A</em></sub> values were between 1.03 × 10<sup>−6</sup> to 0.12 m. The <em>z</em><sub><em>0-G</em></sub> values were calculated from a terrestrial lidar scan using various resolution values of post-process resolutions. These resolutions of 0.01, 0.1, and 1 m resulted in <em>z</em><sub><em>0-G</em></sub> values of 0.26, 0.08, and 0.01 m, respectively. Therefore, as the resolution coarsened, the <em>z</em><sub><em>0-G</em></sub> values decreased. Lastly, these calculated <em>z</em><sub><em>0-G</em></sub> values, a variable run, using weekly measured <em>z</em><sub><em>0-G</em></sub> values, and 0.002 (SNOWPACK default), 0.02, and 0.2 m values were incorporated into the SNOWPACK model. When applied, cumulative sublimation, SWE, and sensible heat outputs varied by 131%, −71%, and −49%, when compared to the default <em>z</em><sub><em>0</em></sub> value used within the model.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"41 ","pages":"Article 101110"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How does a dynamic surface roughness affect snowpack modeling?\",\"authors\":\"Jessica E. Sanow ,&nbsp;Steven R. Fassnacht ,&nbsp;Kazuyoshi Suzuki\",\"doi\":\"10.1016/j.polar.2024.101110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The SNOWPACK model is a cryosphere model which incorporates several environmental model parameters, one of which being the aerodynamic roughness length (<em>z</em><sub><em>0</em></sub>). The <em>z</em><sub><em>0</em></sub> is considered a static parameter, however, research has shown that the <em>z</em><sub><em>0</em></sub> of the surface is variable due to the changing nature of the snowpack surface throughout the winter season. This study highlights the sensitivity of the <em>z</em><sub><em>0</em></sub> within the SNOWPACK model based on the outputs of sublimation, SWE, and sensible heat. The <em>z</em><sub><em>0</em></sub> values were calculated in two ways, anemometrically (<em>z</em><sub><em>0-A</em></sub>), using a wind profile, and geometrically (<em>z</em><sub><em>0-G</em></sub>), measuring surface geometry. Calculated <em>z</em><sub><em>0-A</em></sub> values were between 1.03 × 10<sup>−6</sup> to 0.12 m. The <em>z</em><sub><em>0-G</em></sub> values were calculated from a terrestrial lidar scan using various resolution values of post-process resolutions. These resolutions of 0.01, 0.1, and 1 m resulted in <em>z</em><sub><em>0-G</em></sub> values of 0.26, 0.08, and 0.01 m, respectively. Therefore, as the resolution coarsened, the <em>z</em><sub><em>0-G</em></sub> values decreased. Lastly, these calculated <em>z</em><sub><em>0-G</em></sub> values, a variable run, using weekly measured <em>z</em><sub><em>0-G</em></sub> values, and 0.002 (SNOWPACK default), 0.02, and 0.2 m values were incorporated into the SNOWPACK model. When applied, cumulative sublimation, SWE, and sensible heat outputs varied by 131%, −71%, and −49%, when compared to the default <em>z</em><sub><em>0</em></sub> value used within the model.</p></div>\",\"PeriodicalId\":20316,\"journal\":{\"name\":\"Polar Science\",\"volume\":\"41 \",\"pages\":\"Article 101110\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873965224000938\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000938","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

SNOWPACK 模型是一个冰冻圈模型,其中包含几个环境模型参数,其中之一是气动粗糙度长度()。气动粗糙度长度被认为是一个静态参数,但研究表明,由于整个冬季雪堆表面的性质不断变化,气动粗糙度长度是可变的。本研究根据升华、SWE 和显热的输出结果,强调了 SNOWPACK 模型中的敏感性。这些数值通过两种方式计算得出:风速(),使用风廓线;几何(),测量表面几何形状。计算值介于 1.03 × 10 到 0.12 米之间。这些分辨率分别为 0.01、0.1 和 1 米,得出的数值分别为 0.26、0.08 和 0.01 米。因此,随着分辨率的提高,数值也随之降低。最后,这些计算值、使用每周测量值的变量运行以及 0.002(SNOWPACK 默认值)、0.02 和 0.2 米值被纳入 SNOWPACK 模型。与模型中使用的默认值相比,累积升华、SWE 和显热输出的变化分别为 131%、-71% 和 -49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How does a dynamic surface roughness affect snowpack modeling?

The SNOWPACK model is a cryosphere model which incorporates several environmental model parameters, one of which being the aerodynamic roughness length (z0). The z0 is considered a static parameter, however, research has shown that the z0 of the surface is variable due to the changing nature of the snowpack surface throughout the winter season. This study highlights the sensitivity of the z0 within the SNOWPACK model based on the outputs of sublimation, SWE, and sensible heat. The z0 values were calculated in two ways, anemometrically (z0-A), using a wind profile, and geometrically (z0-G), measuring surface geometry. Calculated z0-A values were between 1.03 × 10−6 to 0.12 m. The z0-G values were calculated from a terrestrial lidar scan using various resolution values of post-process resolutions. These resolutions of 0.01, 0.1, and 1 m resulted in z0-G values of 0.26, 0.08, and 0.01 m, respectively. Therefore, as the resolution coarsened, the z0-G values decreased. Lastly, these calculated z0-G values, a variable run, using weekly measured z0-G values, and 0.002 (SNOWPACK default), 0.02, and 0.2 m values were incorporated into the SNOWPACK model. When applied, cumulative sublimation, SWE, and sensible heat outputs varied by 131%, −71%, and −49%, when compared to the default z0 value used within the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polar Science
Polar Science ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
3.90
自引率
5.60%
发文量
46
期刊介绍: Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication. - Space and upper atmosphere physics - Atmospheric science/climatology - Glaciology - Oceanography/sea ice studies - Geology/petrology - Solid earth geophysics/seismology - Marine Earth science - Geomorphology/Cenozoic-Quaternary geology - Meteoritics - Terrestrial biology - Marine biology - Animal ecology - Environment - Polar Engineering - Humanities and social sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信