Marc Aubreville, Jonathan Ganz, Jonas Ammeling, Emely Rosbach, Thomas Gehrke, Agmal Scherzad, Stephan Hackenberg, Miguel Goncalves
{"title":"利用大型语言模型预测肿瘤委员会的程序建议","authors":"Marc Aubreville, Jonathan Ganz, Jonas Ammeling, Emely Rosbach, Thomas Gehrke, Agmal Scherzad, Stephan Hackenberg, Miguel Goncalves","doi":"10.1007/s00405-024-08947-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Multidisciplinary tumor boards are meetings where a team of medical specialists, including medical oncologists, radiation oncologists, radiologists, surgeons, and pathologists, collaborate to determine the best treatment plan for cancer patients. While decision-making in this context is logistically and cost-intensive, it has a significant positive effect on overall cancer survival.</p><h3 data-test=\"abstract-sub-heading\">Methods </h3><p>We evaluated the quality and accuracy of predictions by several large language models for recommending procedures by a Head and Neck Oncology tumor board, which we adapted for the task using parameter-efficient fine-tuning or in-context learning. Records were divided into two sets: n=229 used for training and n=100 records for validation of our approaches. Randomized, blinded, manual human expert classification was used to evaluate the different models.</p><h3 data-test=\"abstract-sub-heading\">Results </h3><p>Treatment line congruence varied depending on the model, reaching up to 86%, with medically justifiable recommendations up to 98%. Parameter-efficient fine-tuning yielded better outcomes than in-context learning, and larger/commercial models tend to perform better.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Providing precise, medically justifiable procedural recommendations for complex oncology patients is feasible. Extending the data corpus to a larger patient cohort and incorporating the latest guidelines, assuming the model can handle sufficient context length, could result in more factual and guideline-aligned responses and is anticipated to enhance model performance. We, therefore, encourage further research in this direction to improve the efficacy and reliability of large language models as support in medical decision-making processes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of tumor board procedural recommendations using large language models\",\"authors\":\"Marc Aubreville, Jonathan Ganz, Jonas Ammeling, Emely Rosbach, Thomas Gehrke, Agmal Scherzad, Stephan Hackenberg, Miguel Goncalves\",\"doi\":\"10.1007/s00405-024-08947-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Introduction</h3><p>Multidisciplinary tumor boards are meetings where a team of medical specialists, including medical oncologists, radiation oncologists, radiologists, surgeons, and pathologists, collaborate to determine the best treatment plan for cancer patients. While decision-making in this context is logistically and cost-intensive, it has a significant positive effect on overall cancer survival.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods </h3><p>We evaluated the quality and accuracy of predictions by several large language models for recommending procedures by a Head and Neck Oncology tumor board, which we adapted for the task using parameter-efficient fine-tuning or in-context learning. Records were divided into two sets: n=229 used for training and n=100 records for validation of our approaches. Randomized, blinded, manual human expert classification was used to evaluate the different models.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results </h3><p>Treatment line congruence varied depending on the model, reaching up to 86%, with medically justifiable recommendations up to 98%. Parameter-efficient fine-tuning yielded better outcomes than in-context learning, and larger/commercial models tend to perform better.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>Providing precise, medically justifiable procedural recommendations for complex oncology patients is feasible. Extending the data corpus to a larger patient cohort and incorporating the latest guidelines, assuming the model can handle sufficient context length, could result in more factual and guideline-aligned responses and is anticipated to enhance model performance. We, therefore, encourage further research in this direction to improve the efficacy and reliability of large language models as support in medical decision-making processes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00405-024-08947-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00405-024-08947-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prediction of tumor board procedural recommendations using large language models
Introduction
Multidisciplinary tumor boards are meetings where a team of medical specialists, including medical oncologists, radiation oncologists, radiologists, surgeons, and pathologists, collaborate to determine the best treatment plan for cancer patients. While decision-making in this context is logistically and cost-intensive, it has a significant positive effect on overall cancer survival.
Methods
We evaluated the quality and accuracy of predictions by several large language models for recommending procedures by a Head and Neck Oncology tumor board, which we adapted for the task using parameter-efficient fine-tuning or in-context learning. Records were divided into two sets: n=229 used for training and n=100 records for validation of our approaches. Randomized, blinded, manual human expert classification was used to evaluate the different models.
Results
Treatment line congruence varied depending on the model, reaching up to 86%, with medically justifiable recommendations up to 98%. Parameter-efficient fine-tuning yielded better outcomes than in-context learning, and larger/commercial models tend to perform better.
Conclusion
Providing precise, medically justifiable procedural recommendations for complex oncology patients is feasible. Extending the data corpus to a larger patient cohort and incorporating the latest guidelines, assuming the model can handle sufficient context length, could result in more factual and guideline-aligned responses and is anticipated to enhance model performance. We, therefore, encourage further research in this direction to improve the efficacy and reliability of large language models as support in medical decision-making processes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.