{"title":"内部永磁同步电机的转矩纹波分析与降低","authors":"Lixin Wang;Xiaoyuan Wang","doi":"10.1109/TASC.2024.3450880","DOIUrl":null,"url":null,"abstract":"Interior permanent magnet synchronous motors (IPMSMs) have some inherent disadvantages, such as high torque ripple and difficulty in optimizing design due to the complex rotor structure. To address these issues, this paper proposes a method for optimizing the rotor structure of IPMSMs to reduce torque ripple. The flux barriers in the rotor are abstracted as virtual slots, and the effect of the position of the virtual slots on torque ripple is studied. Based on this analysis, a general method for optimizing the rotor structure to reduce torque ripple is proposed. To demonstrate the proposed method's effectiveness, the original prototype's rotor structure is optimized using the proposed method. The electromagnetic performance of the prototype before and after optimization is calculated. The results show that the optimization can reduce the torque ripple without affecting other electromagnetic performance. Finally, the theoretical analysis and simulation results are validated by conducting a prototype test, which provides support for the proposed method of torque ripple reduction.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 8","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torque Ripple Analysis and Reduction of Interior Permanent Magnet Synchronous Motors\",\"authors\":\"Lixin Wang;Xiaoyuan Wang\",\"doi\":\"10.1109/TASC.2024.3450880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interior permanent magnet synchronous motors (IPMSMs) have some inherent disadvantages, such as high torque ripple and difficulty in optimizing design due to the complex rotor structure. To address these issues, this paper proposes a method for optimizing the rotor structure of IPMSMs to reduce torque ripple. The flux barriers in the rotor are abstracted as virtual slots, and the effect of the position of the virtual slots on torque ripple is studied. Based on this analysis, a general method for optimizing the rotor structure to reduce torque ripple is proposed. To demonstrate the proposed method's effectiveness, the original prototype's rotor structure is optimized using the proposed method. The electromagnetic performance of the prototype before and after optimization is calculated. The results show that the optimization can reduce the torque ripple without affecting other electromagnetic performance. Finally, the theoretical analysis and simulation results are validated by conducting a prototype test, which provides support for the proposed method of torque ripple reduction.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"34 8\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654537/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10654537/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Torque Ripple Analysis and Reduction of Interior Permanent Magnet Synchronous Motors
Interior permanent magnet synchronous motors (IPMSMs) have some inherent disadvantages, such as high torque ripple and difficulty in optimizing design due to the complex rotor structure. To address these issues, this paper proposes a method for optimizing the rotor structure of IPMSMs to reduce torque ripple. The flux barriers in the rotor are abstracted as virtual slots, and the effect of the position of the virtual slots on torque ripple is studied. Based on this analysis, a general method for optimizing the rotor structure to reduce torque ripple is proposed. To demonstrate the proposed method's effectiveness, the original prototype's rotor structure is optimized using the proposed method. The electromagnetic performance of the prototype before and after optimization is calculated. The results show that the optimization can reduce the torque ripple without affecting other electromagnetic performance. Finally, the theoretical analysis and simulation results are validated by conducting a prototype test, which provides support for the proposed method of torque ripple reduction.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.