Michiaki Nagai, Karl-Philipp Rommel, Sunny S. Po, Tarun W. Dasari
{"title":"自律神经调节治疗代谢综合征相关心肌病--预防射血分数保留型心力衰竭的前兆--","authors":"Michiaki Nagai, Karl-Philipp Rommel, Sunny S. Po, Tarun W. Dasari","doi":"10.1038/s41440-024-01886-2","DOIUrl":null,"url":null,"abstract":"<p>Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.</p><figure></figure>","PeriodicalId":13029,"journal":{"name":"Hypertension Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction-\",\"authors\":\"Michiaki Nagai, Karl-Philipp Rommel, Sunny S. Po, Tarun W. Dasari\",\"doi\":\"10.1038/s41440-024-01886-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.</p><figure></figure>\",\"PeriodicalId\":13029,\"journal\":{\"name\":\"Hypertension Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hypertension Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41440-024-01886-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hypertension Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41440-024-01886-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction-
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized.
期刊介绍:
Hypertension Research is the official publication of the Japanese Society of Hypertension. The journal publishes papers reporting original clinical and experimental research that contribute to the advancement of knowledge in the field of hypertension and related cardiovascular diseases. The journal publishes Review Articles, Articles, Correspondence and Comments.