{"title":"对流云环境的大规模参数扫描实验:水分-不稳定性-剪切空间中降雨特征的变化","authors":"Kenta Sueki","doi":"10.2151/sola.20b-001","DOIUrl":null,"url":null,"abstract":"</p><p>This study aimed to generalize the understanding of the dependence of convective clouds on the environment. We conducted a massive parameter sweep experiment on convective cloud environments using the warm bubble method with 15600 different profiles to examine how the rainfall characteristics of convective clouds change in response to environmental changes. The experiment showed that an increase in the conditional instability resulted in a significant increase in the total rainfall amount by several orders of magnitude, even when the precipitable water was almost identical. Vertical wind shear either enhanced or suppressed convective rainfall, depending on the degree of conditional instability. The threshold of conditional instability at which the effect of vertical shear switched from suppression to enhancement lowered as the magnitude of vertical shear increased. Regarding the depth of the shear layer, the effect of vertical shear became more significant as the depth increased from 3 km to 6 km. The drastic change in the rainfall amount reflects a shift in the mode of convective cloud development. When the conditional instability was large, vertical shear changed the convective cloud development from the “decay mode” to the “growth mode” in some environments, resulting in a significant increase in the rainfall amount.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"81 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massive Parameter Sweep Experiment on Convective Cloud Environment: Changes in Rainfall Characteristics in Moisture–Instability–Shear Space\",\"authors\":\"Kenta Sueki\",\"doi\":\"10.2151/sola.20b-001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>This study aimed to generalize the understanding of the dependence of convective clouds on the environment. We conducted a massive parameter sweep experiment on convective cloud environments using the warm bubble method with 15600 different profiles to examine how the rainfall characteristics of convective clouds change in response to environmental changes. The experiment showed that an increase in the conditional instability resulted in a significant increase in the total rainfall amount by several orders of magnitude, even when the precipitable water was almost identical. Vertical wind shear either enhanced or suppressed convective rainfall, depending on the degree of conditional instability. The threshold of conditional instability at which the effect of vertical shear switched from suppression to enhancement lowered as the magnitude of vertical shear increased. Regarding the depth of the shear layer, the effect of vertical shear became more significant as the depth increased from 3 km to 6 km. The drastic change in the rainfall amount reflects a shift in the mode of convective cloud development. When the conditional instability was large, vertical shear changed the convective cloud development from the “decay mode” to the “growth mode” in some environments, resulting in a significant increase in the rainfall amount.</p>\\n<p></p>\",\"PeriodicalId\":49501,\"journal\":{\"name\":\"Sola\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sola\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/sola.20b-001\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.20b-001","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Massive Parameter Sweep Experiment on Convective Cloud Environment: Changes in Rainfall Characteristics in Moisture–Instability–Shear Space
This study aimed to generalize the understanding of the dependence of convective clouds on the environment. We conducted a massive parameter sweep experiment on convective cloud environments using the warm bubble method with 15600 different profiles to examine how the rainfall characteristics of convective clouds change in response to environmental changes. The experiment showed that an increase in the conditional instability resulted in a significant increase in the total rainfall amount by several orders of magnitude, even when the precipitable water was almost identical. Vertical wind shear either enhanced or suppressed convective rainfall, depending on the degree of conditional instability. The threshold of conditional instability at which the effect of vertical shear switched from suppression to enhancement lowered as the magnitude of vertical shear increased. Regarding the depth of the shear layer, the effect of vertical shear became more significant as the depth increased from 3 km to 6 km. The drastic change in the rainfall amount reflects a shift in the mode of convective cloud development. When the conditional instability was large, vertical shear changed the convective cloud development from the “decay mode” to the “growth mode” in some environments, resulting in a significant increase in the rainfall amount.
期刊介绍:
SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles.
Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.