优化智能结构拓扑,提高振动控制和能量收集性能

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
J P Sena, A M G de Lima, N Bouhaddi, N Kacem
{"title":"优化智能结构拓扑,提高振动控制和能量收集性能","authors":"J P Sena, A M G de Lima, N Bouhaddi, N Kacem","doi":"10.1088/1361-665x/ad69ea","DOIUrl":null,"url":null,"abstract":"With the growing interest in smart materials, the utilization of shunted piezoceramics for dynamic vibration control has gained significant attention due to their unique characteristics, such as the ability to absorb strain energy from vibrating systems and convert it into electrical energy. Designing and analyzing the behavior of structures in hybrid mitigation/harvesting conditions, considering both reliability and performance, pose challenges. This paper aims to achieve optimal design parameters for the structure by employing a multiobjective optimization approach that strikes a compromise between maximizing harvested power and minimizing structural damage. To evaluate the effectiveness of the design, topology optimization was conducted in three different cases to compare the results. By systematically exploring the design space, these cases provide insights into the influence of various parameters on the structural performance. In addition, to enhance computational efficiency, the structure was represented as a metamodel using neural networks. This approach enables rapid evaluation and prediction of the structure’s behavior, facilitating the optimization process. By integrating multiobjective optimization, topology optimization, and metamodeling techniques, this study aims to provide valuable insights into the optimal design of structures that simultaneously incorporate shunt circuitry for vibration control and energy harvesting, leading to improved performance and reliability.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"10 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization of smart structures to enhance the performances of vibration control and energy harvesting\",\"authors\":\"J P Sena, A M G de Lima, N Bouhaddi, N Kacem\",\"doi\":\"10.1088/1361-665x/ad69ea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing interest in smart materials, the utilization of shunted piezoceramics for dynamic vibration control has gained significant attention due to their unique characteristics, such as the ability to absorb strain energy from vibrating systems and convert it into electrical energy. Designing and analyzing the behavior of structures in hybrid mitigation/harvesting conditions, considering both reliability and performance, pose challenges. This paper aims to achieve optimal design parameters for the structure by employing a multiobjective optimization approach that strikes a compromise between maximizing harvested power and minimizing structural damage. To evaluate the effectiveness of the design, topology optimization was conducted in three different cases to compare the results. By systematically exploring the design space, these cases provide insights into the influence of various parameters on the structural performance. In addition, to enhance computational efficiency, the structure was represented as a metamodel using neural networks. This approach enables rapid evaluation and prediction of the structure’s behavior, facilitating the optimization process. By integrating multiobjective optimization, topology optimization, and metamodeling techniques, this study aims to provide valuable insights into the optimal design of structures that simultaneously incorporate shunt circuitry for vibration control and energy harvesting, leading to improved performance and reliability.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad69ea\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad69ea","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对智能材料的兴趣与日俱增,用于动态振动控制的分流压电陶瓷因其独特的特性(如从振动系统中吸收应变能并将其转换为电能的能力)而备受关注。在考虑可靠性和性能的同时,设计和分析混合缓解/收获条件下的结构行为是一项挑战。本文旨在通过采用多目标优化方法,实现结构的最佳设计参数,在最大化收获功率和最小化结构损坏之间取得折中。为评估设计的有效性,在三种不同情况下进行了拓扑优化,以比较结果。通过系统地探索设计空间,这些案例让我们深入了解了各种参数对结构性能的影响。此外,为了提高计算效率,使用神经网络将结构表示为元模型。这种方法可以快速评估和预测结构的行为,促进优化过程。通过整合多目标优化、拓扑优化和元模型技术,本研究旨在为同时包含用于振动控制和能量收集的并联电路的结构优化设计提供有价值的见解,从而提高结构的性能和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology optimization of smart structures to enhance the performances of vibration control and energy harvesting
With the growing interest in smart materials, the utilization of shunted piezoceramics for dynamic vibration control has gained significant attention due to their unique characteristics, such as the ability to absorb strain energy from vibrating systems and convert it into electrical energy. Designing and analyzing the behavior of structures in hybrid mitigation/harvesting conditions, considering both reliability and performance, pose challenges. This paper aims to achieve optimal design parameters for the structure by employing a multiobjective optimization approach that strikes a compromise between maximizing harvested power and minimizing structural damage. To evaluate the effectiveness of the design, topology optimization was conducted in three different cases to compare the results. By systematically exploring the design space, these cases provide insights into the influence of various parameters on the structural performance. In addition, to enhance computational efficiency, the structure was represented as a metamodel using neural networks. This approach enables rapid evaluation and prediction of the structure’s behavior, facilitating the optimization process. By integrating multiobjective optimization, topology optimization, and metamodeling techniques, this study aims to provide valuable insights into the optimal design of structures that simultaneously incorporate shunt circuitry for vibration control and energy harvesting, leading to improved performance and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信