{"title":"新型半主动吸收和隔离协同控制策略与商用车磁流变座椅悬架的性能评估","authors":"Pingyang Li, Xiaomin Dong, Jinchao Ran, Zhenyang Fei, Lifan Wu, Di Xu","doi":"10.1088/1361-665x/ad7080","DOIUrl":null,"url":null,"abstract":"Vibration isolation performance of seat suspension plays a critical role in protection of drive’s physical health as the last barrier. In this paper, the integrated magnetorheological (MR) dynamic tuned mass damper (TMD) is firstly designed and utilized into seat suspension. A semi-active co-control algorithm with MR damper and MR TMD is designed, analyzed and validated by comparative experiments. The dynamic models of two MR devices have been tested and fitted. Comparing with simulation and experimental results under various excitations and control conditions, this co-control algorithm with MR TMD is validated to be highly effective. The transmissibility at resonance frequency reaches to 0.81 which is less than 1. This phenomenon has hardly been investigated in seat suspension. It illustrates that resonance has been suppressed and improved significantly. The peak acceleration decreases to 1.19 m s<sup>−2</sup> with a reduction of 57.2%, in contrast to passive condition with MR damper. The comfort index is increased by 45.6% under random excitation than passive condition. According to these comparisons, the vibration isolation property and comfort of seat suspension can be further improved by the proposed co-control algorithm with two MR devices.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of a novel semi-active absorption and isolation co-control strategy with magnetorheological seat suspension for commercial vehicle\",\"authors\":\"Pingyang Li, Xiaomin Dong, Jinchao Ran, Zhenyang Fei, Lifan Wu, Di Xu\",\"doi\":\"10.1088/1361-665x/ad7080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration isolation performance of seat suspension plays a critical role in protection of drive’s physical health as the last barrier. In this paper, the integrated magnetorheological (MR) dynamic tuned mass damper (TMD) is firstly designed and utilized into seat suspension. A semi-active co-control algorithm with MR damper and MR TMD is designed, analyzed and validated by comparative experiments. The dynamic models of two MR devices have been tested and fitted. Comparing with simulation and experimental results under various excitations and control conditions, this co-control algorithm with MR TMD is validated to be highly effective. The transmissibility at resonance frequency reaches to 0.81 which is less than 1. This phenomenon has hardly been investigated in seat suspension. It illustrates that resonance has been suppressed and improved significantly. The peak acceleration decreases to 1.19 m s<sup>−2</sup> with a reduction of 57.2%, in contrast to passive condition with MR damper. The comfort index is increased by 45.6% under random excitation than passive condition. According to these comparisons, the vibration isolation property and comfort of seat suspension can be further improved by the proposed co-control algorithm with two MR devices.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad7080\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad7080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Performance evaluation of a novel semi-active absorption and isolation co-control strategy with magnetorheological seat suspension for commercial vehicle
Vibration isolation performance of seat suspension plays a critical role in protection of drive’s physical health as the last barrier. In this paper, the integrated magnetorheological (MR) dynamic tuned mass damper (TMD) is firstly designed and utilized into seat suspension. A semi-active co-control algorithm with MR damper and MR TMD is designed, analyzed and validated by comparative experiments. The dynamic models of two MR devices have been tested and fitted. Comparing with simulation and experimental results under various excitations and control conditions, this co-control algorithm with MR TMD is validated to be highly effective. The transmissibility at resonance frequency reaches to 0.81 which is less than 1. This phenomenon has hardly been investigated in seat suspension. It illustrates that resonance has been suppressed and improved significantly. The peak acceleration decreases to 1.19 m s−2 with a reduction of 57.2%, in contrast to passive condition with MR damper. The comfort index is increased by 45.6% under random excitation than passive condition. According to these comparisons, the vibration isolation property and comfort of seat suspension can be further improved by the proposed co-control algorithm with two MR devices.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.