正电子发射断层扫描辅助金纳米棒光热疗法

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Carlos Renero‐Lecuna, Krishna R. Pulagam, Kepa B. Uribe, Paula Vázquez‐Aristizabal, Vanessa Gómez‐Vallejo, Luis M. Liz‐Marzán, Jordi Llop, Malou Henriksen‐Lacey
{"title":"正电子发射断层扫描辅助金纳米棒光热疗法","authors":"Carlos Renero‐Lecuna, Krishna R. Pulagam, Kepa B. Uribe, Paula Vázquez‐Aristizabal, Vanessa Gómez‐Vallejo, Luis M. Liz‐Marzán, Jordi Llop, Malou Henriksen‐Lacey","doi":"10.1002/ppsc.202400185","DOIUrl":null,"url":null,"abstract":"Photothermal anticancer therapy based on plasmonic nanoparticles is proposed to enhance treatment efficacy while mitigating unintended side effects. However, most studies blindly rely on the accumulation of nanoparticles at the tumor site, which may result in inefficient treatment. In this study, the aim is to evaluate relevant parameters to improve plasmonic photothermal therapy. Gold nanorods (AuNRs) with an optimized aspect ratio and either amino or carboxylic acid surface functionalization are selected as photothermal agents. AuNR biocompatibility and photothermal activity in 2D and 3D human MDA‐MB‐231 triple‐negative breast cancer cell models, evaluating localized hyperthermal cell death upon irradiation with resonant near‐infrared (NIR) light, are analyzed first. To ensure reliable tracking of biodistribution in vivo, AuNRs are labeled with the positron emitter copper‐64 (<jats:sup>64</jats:sup>Cu), and their distribution in a murine MDA‐MB‐231 tumor model is studied via positron emission tomography (PET) imaging. PET images reveal enhanced tumor accumulation of carboxylic acid‐functionalized AuNRs compared to amino‐functionalized AuNRs post‐intravenous administration. Relatively low NIR laser power densities (0.5 W cm<jats:sup>−2</jats:sup>) are used for controlled heating – keeping local temperature below 50 °C – upon irradiation of intravenously and intratumorally administered AuNRs. As a result, tumor growth is significantly decelerated, even 9 days after application of photothermal therapy.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"15 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positron Emission Tomography‐Assisted Photothermal Therapy with Gold Nanorods\",\"authors\":\"Carlos Renero‐Lecuna, Krishna R. Pulagam, Kepa B. Uribe, Paula Vázquez‐Aristizabal, Vanessa Gómez‐Vallejo, Luis M. Liz‐Marzán, Jordi Llop, Malou Henriksen‐Lacey\",\"doi\":\"10.1002/ppsc.202400185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photothermal anticancer therapy based on plasmonic nanoparticles is proposed to enhance treatment efficacy while mitigating unintended side effects. However, most studies blindly rely on the accumulation of nanoparticles at the tumor site, which may result in inefficient treatment. In this study, the aim is to evaluate relevant parameters to improve plasmonic photothermal therapy. Gold nanorods (AuNRs) with an optimized aspect ratio and either amino or carboxylic acid surface functionalization are selected as photothermal agents. AuNR biocompatibility and photothermal activity in 2D and 3D human MDA‐MB‐231 triple‐negative breast cancer cell models, evaluating localized hyperthermal cell death upon irradiation with resonant near‐infrared (NIR) light, are analyzed first. To ensure reliable tracking of biodistribution in vivo, AuNRs are labeled with the positron emitter copper‐64 (<jats:sup>64</jats:sup>Cu), and their distribution in a murine MDA‐MB‐231 tumor model is studied via positron emission tomography (PET) imaging. PET images reveal enhanced tumor accumulation of carboxylic acid‐functionalized AuNRs compared to amino‐functionalized AuNRs post‐intravenous administration. Relatively low NIR laser power densities (0.5 W cm<jats:sup>−2</jats:sup>) are used for controlled heating – keeping local temperature below 50 °C – upon irradiation of intravenously and intratumorally administered AuNRs. As a result, tumor growth is significantly decelerated, even 9 days after application of photothermal therapy.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400185\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400185","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有人提出基于等离子纳米粒子的光热抗癌疗法可提高疗效,同时减轻意外副作用。然而,大多数研究盲目地依赖于纳米粒子在肿瘤部位的积累,这可能会导致治疗效率低下。本研究旨在评估相关参数,以改进等离子体光热疗法。金纳米棒(AuNRs)具有优化的长宽比,表面功能化为氨基或羧酸,被选为光热剂。首先分析了 AuNR 在二维和三维人 MDA-MB-231 三阴性乳腺癌细胞模型中的生物相容性和光热活性,评估了共振近红外(NIR)光照射时局部高热细胞死亡的情况。为确保可靠地跟踪体内生物分布,AuNRs 被正电子发射体铜-64(64Cu)标记,并通过正电子发射断层扫描(PET)成像研究其在小鼠 MDA-MB-231 肿瘤模型中的分布。PET 图像显示,与氨基功能化 AuNRs 相比,羧酸功能化 AuNRs 在静脉给药后的肿瘤蓄积增强。相对较低的近红外激光功率密度(0.5 W cm-2)用于控制加热--在静脉注射和肿瘤内注射 AuNRs 时,将局部温度控制在 50 °C 以下。因此,即使在应用光热疗法 9 天后,肿瘤生长也会明显减慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positron Emission Tomography‐Assisted Photothermal Therapy with Gold Nanorods
Photothermal anticancer therapy based on plasmonic nanoparticles is proposed to enhance treatment efficacy while mitigating unintended side effects. However, most studies blindly rely on the accumulation of nanoparticles at the tumor site, which may result in inefficient treatment. In this study, the aim is to evaluate relevant parameters to improve plasmonic photothermal therapy. Gold nanorods (AuNRs) with an optimized aspect ratio and either amino or carboxylic acid surface functionalization are selected as photothermal agents. AuNR biocompatibility and photothermal activity in 2D and 3D human MDA‐MB‐231 triple‐negative breast cancer cell models, evaluating localized hyperthermal cell death upon irradiation with resonant near‐infrared (NIR) light, are analyzed first. To ensure reliable tracking of biodistribution in vivo, AuNRs are labeled with the positron emitter copper‐64 (64Cu), and their distribution in a murine MDA‐MB‐231 tumor model is studied via positron emission tomography (PET) imaging. PET images reveal enhanced tumor accumulation of carboxylic acid‐functionalized AuNRs compared to amino‐functionalized AuNRs post‐intravenous administration. Relatively low NIR laser power densities (0.5 W cm−2) are used for controlled heating – keeping local temperature below 50 °C – upon irradiation of intravenously and intratumorally administered AuNRs. As a result, tumor growth is significantly decelerated, even 9 days after application of photothermal therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信