{"title":"基于铂纳米粒子、碳量子点和聚天冬氨酸的一次性谷氨酸生物传感器。","authors":"Ceren Kaçar Selvi,Barış Şenceol,Pınar Esra Erden","doi":"10.1080/10826068.2024.2402340","DOIUrl":null,"url":null,"abstract":"This study reports the design and development of a disposable amperometric biosensor for the determination of L-glutamate. Glutamate oxidase (GlOx) was immobilized onto a screen-printed carbon electrode (SPE) modified with poly-L-Aspartic acid (PAsp), carbon quantum dots (CQD), and platinum nanoparticles (PtNP) for the construction of the biosensor. The surface composition of the modified SPE was optimized using the one variable at a time method. The morphological properties of the biosensor were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical behavior of the modified electrodes was studied by cyclic voltammetry. Under the optimized experimental conditions the linear working range, detection limit and sensitivity of the GlOx/PtNP/CQD/PAsp/SPE were found to be 1.0 - 140 µM, 0.3 µM and 0.002 µA µM-1, respectively. The GlOx/PtNP/CQD/PAsp/SPE biosensor also exhibited good measurement repeatability. The as-developed biosensor was applied for the determination of L-glutamate in spiked serum samples and the average analytical recovery of added glutamate was 98.9 ± 3.9%.","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":"6 1","pages":"1-9"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disposable glutamate biosensor based on platinum nanoparticles, carbon quantum dots and poly-L-aspartic acid.\",\"authors\":\"Ceren Kaçar Selvi,Barış Şenceol,Pınar Esra Erden\",\"doi\":\"10.1080/10826068.2024.2402340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports the design and development of a disposable amperometric biosensor for the determination of L-glutamate. Glutamate oxidase (GlOx) was immobilized onto a screen-printed carbon electrode (SPE) modified with poly-L-Aspartic acid (PAsp), carbon quantum dots (CQD), and platinum nanoparticles (PtNP) for the construction of the biosensor. The surface composition of the modified SPE was optimized using the one variable at a time method. The morphological properties of the biosensor were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical behavior of the modified electrodes was studied by cyclic voltammetry. Under the optimized experimental conditions the linear working range, detection limit and sensitivity of the GlOx/PtNP/CQD/PAsp/SPE were found to be 1.0 - 140 µM, 0.3 µM and 0.002 µA µM-1, respectively. The GlOx/PtNP/CQD/PAsp/SPE biosensor also exhibited good measurement repeatability. The as-developed biosensor was applied for the determination of L-glutamate in spiked serum samples and the average analytical recovery of added glutamate was 98.9 ± 3.9%.\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\"6 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2024.2402340\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2402340","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Disposable glutamate biosensor based on platinum nanoparticles, carbon quantum dots and poly-L-aspartic acid.
This study reports the design and development of a disposable amperometric biosensor for the determination of L-glutamate. Glutamate oxidase (GlOx) was immobilized onto a screen-printed carbon electrode (SPE) modified with poly-L-Aspartic acid (PAsp), carbon quantum dots (CQD), and platinum nanoparticles (PtNP) for the construction of the biosensor. The surface composition of the modified SPE was optimized using the one variable at a time method. The morphological properties of the biosensor were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical behavior of the modified electrodes was studied by cyclic voltammetry. Under the optimized experimental conditions the linear working range, detection limit and sensitivity of the GlOx/PtNP/CQD/PAsp/SPE were found to be 1.0 - 140 µM, 0.3 µM and 0.002 µA µM-1, respectively. The GlOx/PtNP/CQD/PAsp/SPE biosensor also exhibited good measurement repeatability. The as-developed biosensor was applied for the determination of L-glutamate in spiked serum samples and the average analytical recovery of added glutamate was 98.9 ± 3.9%.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.