{"title":"水性聚合物分散体的物理交联:透视","authors":"Nicholas Ballard, Nerea Jimenez, José M. Asua","doi":"10.1002/ppsc.202400103","DOIUrl":null,"url":null,"abstract":"Colloidal polymers, and in particular aqueous polymer dispersions, are widely used in commercial applications such as coatings and adhesives. Historically, the solvent resistance and mechanical properties of these systems have been improved by covalently crosslinking the polymer chains after drying. More recently, work has been directed toward replacing this covalent crosslinking, which typically involves highly reactive functional groups, by physical crosslinking through the use of supramolecular interactions. While conceptually similar to the use of covalent crosslinking, physical crosslinking has a unique influence on the rheology of the polymer, which leads to substantial differences in the development of mechanical strength during drying, as well as the mechanical properties of the final polymer film. In this perspective, the advantages and challenges of this approach are outlined, and an outlook for future research in this direction is provided.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"108 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Crosslinking of Aqueous Polymer Dispersions: A Perspective\",\"authors\":\"Nicholas Ballard, Nerea Jimenez, José M. Asua\",\"doi\":\"10.1002/ppsc.202400103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colloidal polymers, and in particular aqueous polymer dispersions, are widely used in commercial applications such as coatings and adhesives. Historically, the solvent resistance and mechanical properties of these systems have been improved by covalently crosslinking the polymer chains after drying. More recently, work has been directed toward replacing this covalent crosslinking, which typically involves highly reactive functional groups, by physical crosslinking through the use of supramolecular interactions. While conceptually similar to the use of covalent crosslinking, physical crosslinking has a unique influence on the rheology of the polymer, which leads to substantial differences in the development of mechanical strength during drying, as well as the mechanical properties of the final polymer film. In this perspective, the advantages and challenges of this approach are outlined, and an outlook for future research in this direction is provided.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202400103\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400103","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Physical Crosslinking of Aqueous Polymer Dispersions: A Perspective
Colloidal polymers, and in particular aqueous polymer dispersions, are widely used in commercial applications such as coatings and adhesives. Historically, the solvent resistance and mechanical properties of these systems have been improved by covalently crosslinking the polymer chains after drying. More recently, work has been directed toward replacing this covalent crosslinking, which typically involves highly reactive functional groups, by physical crosslinking through the use of supramolecular interactions. While conceptually similar to the use of covalent crosslinking, physical crosslinking has a unique influence on the rheology of the polymer, which leads to substantial differences in the development of mechanical strength during drying, as well as the mechanical properties of the final polymer film. In this perspective, the advantages and challenges of this approach are outlined, and an outlook for future research in this direction is provided.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.