一个适用于地球、火星和土卫六的双层、可分析的大气模型,带有来源

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Edward J. Yoerger, Ashok Puri
{"title":"一个适用于地球、火星和土卫六的双层、可分析的大气模型,带有来源","authors":"Edward J. Yoerger,&nbsp;Ashok Puri","doi":"10.1111/sapm.12753","DOIUrl":null,"url":null,"abstract":"<p>This work utilizes an analytic expression for a model of acoustic propagation in a two-layered, inhomogeneous atmosphere developed by the authors. The model is used to study the atmospheres of Earth, Mars, and Titan. In particular, vertical wave propagation in these atmospheres is studied. The effect(s) of a two-layered, inhomogeneous atmosphere on vertical, acoustic propagation due to a time-harmonic, point source are examined. An adiabatic atmosphere is used for the bottom layer (troposphere) and an isothermal one for the top (stratosphere). The derived, analytic solution is expressed in terms of the acoustic pressure fluctuations. For the adiabatic layers, the solutions satisfy Bessel's equation for orders of <span></span><math>\n <semantics>\n <mrow>\n <mi>χ</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mn>3.5</mn>\n <mo>,</mo>\n <mo>−</mo>\n <mn>4.45</mn>\n </mrow>\n <annotation>$\\chi =-3.5, -4.45$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>3.63</mn>\n </mrow>\n <annotation>$-3.63$</annotation>\n </semantics></math> for Earth, Mars, and Titan, respectively. The Bessel function's argument is <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>Ω</mi>\n <mi>τ</mi>\n </mrow>\n <annotation>$2 \\Omega \\tau$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> are dimensionless frequency and height, respectively. For the isothermal layer, the solution represents a damped, harmonic oscillator with a cutoff value of <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mi>c</mi>\n </msub>\n <annotation>$\\Omega _{c}$</annotation>\n </semantics></math>. Only values greater than <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mi>c</mi>\n </msub>\n <annotation>$\\Omega _{c}$</annotation>\n </semantics></math> are considered. The analysis and results are reported for combinations of single- and double-layer atmospheres in the presence of a source on given boundaries. Acoustic propagation and transmission loss results are shown and discussed for all three planetary bodies: Earth, Mars, and Titan.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-layered, analytically-tractable, atmospheric model applied to Earth, Mars, and Titan with sources\",\"authors\":\"Edward J. Yoerger,&nbsp;Ashok Puri\",\"doi\":\"10.1111/sapm.12753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work utilizes an analytic expression for a model of acoustic propagation in a two-layered, inhomogeneous atmosphere developed by the authors. The model is used to study the atmospheres of Earth, Mars, and Titan. In particular, vertical wave propagation in these atmospheres is studied. The effect(s) of a two-layered, inhomogeneous atmosphere on vertical, acoustic propagation due to a time-harmonic, point source are examined. An adiabatic atmosphere is used for the bottom layer (troposphere) and an isothermal one for the top (stratosphere). The derived, analytic solution is expressed in terms of the acoustic pressure fluctuations. For the adiabatic layers, the solutions satisfy Bessel's equation for orders of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>χ</mi>\\n <mo>=</mo>\\n <mo>−</mo>\\n <mn>3.5</mn>\\n <mo>,</mo>\\n <mo>−</mo>\\n <mn>4.45</mn>\\n </mrow>\\n <annotation>$\\\\chi =-3.5, -4.45$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>3.63</mn>\\n </mrow>\\n <annotation>$-3.63$</annotation>\\n </semantics></math> for Earth, Mars, and Titan, respectively. The Bessel function's argument is <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>Ω</mi>\\n <mi>τ</mi>\\n </mrow>\\n <annotation>$2 \\\\Omega \\\\tau$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math> are dimensionless frequency and height, respectively. For the isothermal layer, the solution represents a damped, harmonic oscillator with a cutoff value of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Ω</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$\\\\Omega _{c}$</annotation>\\n </semantics></math>. Only values greater than <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Ω</mi>\\n <mi>c</mi>\\n </msub>\\n <annotation>$\\\\Omega _{c}$</annotation>\\n </semantics></math> are considered. The analysis and results are reported for combinations of single- and double-layer atmospheres in the presence of a source on given boundaries. Acoustic propagation and transmission loss results are shown and discussed for all three planetary bodies: Earth, Mars, and Titan.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12753\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12753","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项研究利用了作者开发的双层非均质大气中声波传播模型的解析表达式。该模型用于研究地球、火星和土卫六的大气层。特别是研究了垂直波在这些大气中的传播。研究了双层非均质大气对时谐点声源引起的垂直声波传播的影响。底层(对流层)采用绝热大气,顶层(平流层)采用等温大气。得出的解析解用声压波动表示。对于绝热层,在地球、火星和土卫六分别满足贝塞尔方程的阶数为 、 、 和 的情况下,求解结果均满足贝塞尔方程。贝塞尔函数的参数为 ,其中 , 和 分别为无量纲频率和高度。对于等温层,该解决方案代表了一个阻尼谐振子,其截止值为 。 只考虑了大于 的值。报告了在给定边界上存在声源的情况下对单层和双层大气的分析和结果。显示并讨论了所有三个行星体的声传播和传输损耗结果:地球、火星和土卫六。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-layered, analytically-tractable, atmospheric model applied to Earth, Mars, and Titan with sources

This work utilizes an analytic expression for a model of acoustic propagation in a two-layered, inhomogeneous atmosphere developed by the authors. The model is used to study the atmospheres of Earth, Mars, and Titan. In particular, vertical wave propagation in these atmospheres is studied. The effect(s) of a two-layered, inhomogeneous atmosphere on vertical, acoustic propagation due to a time-harmonic, point source are examined. An adiabatic atmosphere is used for the bottom layer (troposphere) and an isothermal one for the top (stratosphere). The derived, analytic solution is expressed in terms of the acoustic pressure fluctuations. For the adiabatic layers, the solutions satisfy Bessel's equation for orders of χ = 3.5 , 4.45 $\chi =-3.5, -4.45$ , and 3.63 $-3.63$ for Earth, Mars, and Titan, respectively. The Bessel function's argument is 2 Ω τ $2 \Omega \tau$ , where Ω $\Omega$ and τ $\tau$ are dimensionless frequency and height, respectively. For the isothermal layer, the solution represents a damped, harmonic oscillator with a cutoff value of Ω c $\Omega _{c}$ . Only values greater than Ω c $\Omega _{c}$ are considered. The analysis and results are reported for combinations of single- and double-layer atmospheres in the presence of a source on given boundaries. Acoustic propagation and transmission loss results are shown and discussed for all three planetary bodies: Earth, Mars, and Titan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信