扩散性罗森茨韦格-麦克阿瑟模型中前沿的稳定性

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Anna Ghazaryan, Stéphane Lafortune, Yuri Latushkin, Vahagn Manukian
{"title":"扩散性罗森茨韦格-麦克阿瑟模型中前沿的稳定性","authors":"Anna Ghazaryan,&nbsp;Stéphane Lafortune,&nbsp;Yuri Latushkin,&nbsp;Vahagn Manukian","doi":"10.1111/sapm.12755","DOIUrl":null,"url":null,"abstract":"<p>We consider a diffusive Rosenzweig–MacArthur predator–prey model in the situation when the prey diffuses at a rate much smaller than that of the predator. In a certain parameter regime, the existence of fronts in the system is known: the underlying dynamical system in a singular limit is reduced to a scalar Fisher–KPP (Kolmogorov–Petrovski–Piskunov) equation and the fronts supported by the full system are small perturbations of the Fisher–KPP fronts. The existence proof is based on the application of the Geometric Singular Perturbation Theory with respect to two small parameters. This paper is focused on the stability of the fronts. We show that, for some parameter regime, the fronts are spectrally and asymptotically stable using energy estimates, exponential dichotomies, the Evans function calculation, and a technique that involves constructing unstable augmented bundles. The energy estimates provide bounds on the unstable spectrum which depend on the small parameters of the system; the bounds are inversely proportional to these parameters. We further improve these estimates by showing that the eigenvalue problem is a small perturbation of some limiting (as the modulus of the eigenvalue parameter goes to infinity) system and that the limiting system has exponential dichotomies. Persistence of the exponential dichotomies then leads to bounds uniform in the small parameters. The main novelty of this approach is related to the fact that the limit of the eigenvalue problem is not autonomous. We then use the concept of the unstable augmented bundles and by treating these as multiscale topological structures with respect to the same two small parameters consequently as in the existence proof, we show that the stability of the fronts is also governed by the scalar Fisher–KPP equation. Furthermore, we perform numerical computations of the Evans function to explicitly identify regions in the parameter space where the fronts are spectrally stable.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12755","citationCount":"0","resultStr":"{\"title\":\"Stability of fronts in the diffusive Rosenzweig–MacArthur model\",\"authors\":\"Anna Ghazaryan,&nbsp;Stéphane Lafortune,&nbsp;Yuri Latushkin,&nbsp;Vahagn Manukian\",\"doi\":\"10.1111/sapm.12755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a diffusive Rosenzweig–MacArthur predator–prey model in the situation when the prey diffuses at a rate much smaller than that of the predator. In a certain parameter regime, the existence of fronts in the system is known: the underlying dynamical system in a singular limit is reduced to a scalar Fisher–KPP (Kolmogorov–Petrovski–Piskunov) equation and the fronts supported by the full system are small perturbations of the Fisher–KPP fronts. The existence proof is based on the application of the Geometric Singular Perturbation Theory with respect to two small parameters. This paper is focused on the stability of the fronts. We show that, for some parameter regime, the fronts are spectrally and asymptotically stable using energy estimates, exponential dichotomies, the Evans function calculation, and a technique that involves constructing unstable augmented bundles. The energy estimates provide bounds on the unstable spectrum which depend on the small parameters of the system; the bounds are inversely proportional to these parameters. We further improve these estimates by showing that the eigenvalue problem is a small perturbation of some limiting (as the modulus of the eigenvalue parameter goes to infinity) system and that the limiting system has exponential dichotomies. Persistence of the exponential dichotomies then leads to bounds uniform in the small parameters. The main novelty of this approach is related to the fact that the limit of the eigenvalue problem is not autonomous. We then use the concept of the unstable augmented bundles and by treating these as multiscale topological structures with respect to the same two small parameters consequently as in the existence proof, we show that the stability of the fronts is also governed by the scalar Fisher–KPP equation. Furthermore, we perform numerical computations of the Evans function to explicitly identify regions in the parameter space where the fronts are spectrally stable.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12755\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12755\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12755","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个扩散的罗森茨韦格-麦克阿瑟捕食者-猎物模型,即猎物的扩散速度远小于捕食者的扩散速度。在某一参数体系中,已知系统中存在前沿:奇异极限中的基本动力系统被简化为标量 Fisher-KPP(科尔莫戈罗夫-彼得罗夫斯基-皮斯库诺夫)方程,完整系统支持的前沿是 Fisher-KPP 前沿的小扰动。存在性证明是基于两个小参数的几何奇异扰动理论的应用。本文的重点是前沿的稳定性。我们利用能量估计、指数二分法、埃文斯函数计算以及一种涉及构建不稳定增量束的技术,证明在某些参数机制下,前沿具有谱稳定性和渐近稳定性。能量估计提供了不稳定谱的边界,这些边界取决于系统的小参数;这些边界与这些参数成反比。我们通过证明特征值问题是某个极限(当特征值参数的模数变为无穷大时)系统的小扰动,以及极限系统具有指数二分性,进一步改进了这些估计值。然后,指数二分法的持续性会导致在小参数中统一的边界。这种方法的主要新颖之处在于特征值问题的极限并不是自主的。然后,我们使用了不稳定增量束的概念,并将其视为与存在性证明中的两个小参数相关的多尺度拓扑结构,从而证明了前沿的稳定性也受标量 Fisher-KPP 方程的支配。此外,我们还对埃文斯函数进行了数值计算,以明确识别参数空间中前沿光谱稳定的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of fronts in the diffusive Rosenzweig–MacArthur model

We consider a diffusive Rosenzweig–MacArthur predator–prey model in the situation when the prey diffuses at a rate much smaller than that of the predator. In a certain parameter regime, the existence of fronts in the system is known: the underlying dynamical system in a singular limit is reduced to a scalar Fisher–KPP (Kolmogorov–Petrovski–Piskunov) equation and the fronts supported by the full system are small perturbations of the Fisher–KPP fronts. The existence proof is based on the application of the Geometric Singular Perturbation Theory with respect to two small parameters. This paper is focused on the stability of the fronts. We show that, for some parameter regime, the fronts are spectrally and asymptotically stable using energy estimates, exponential dichotomies, the Evans function calculation, and a technique that involves constructing unstable augmented bundles. The energy estimates provide bounds on the unstable spectrum which depend on the small parameters of the system; the bounds are inversely proportional to these parameters. We further improve these estimates by showing that the eigenvalue problem is a small perturbation of some limiting (as the modulus of the eigenvalue parameter goes to infinity) system and that the limiting system has exponential dichotomies. Persistence of the exponential dichotomies then leads to bounds uniform in the small parameters. The main novelty of this approach is related to the fact that the limit of the eigenvalue problem is not autonomous. We then use the concept of the unstable augmented bundles and by treating these as multiscale topological structures with respect to the same two small parameters consequently as in the existence proof, we show that the stability of the fronts is also governed by the scalar Fisher–KPP equation. Furthermore, we perform numerical computations of the Evans function to explicitly identify regions in the parameter space where the fronts are spectrally stable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信