扰动格罗斯-威滕-瓦迪亚单元矩阵模型分割函数的渐近性

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yu Chen, Shuai-Xia Xu, Yu-Qiu Zhao
{"title":"扰动格罗斯-威滕-瓦迪亚单元矩阵模型分割函数的渐近性","authors":"Yu Chen,&nbsp;Shuai-Xia Xu,&nbsp;Yu-Qiu Zhao","doi":"10.1111/sapm.12762","DOIUrl":null,"url":null,"abstract":"<p>We consider the asymptotics of the partition function of the extended Gross–Witten–Wadia unitary matrix model by introducing an extra logarithmic term in the potential. The partition function can be written as a Toeplitz determinant with entries expressed in terms of the modified Bessel functions of the first kind and furnishes a <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math>-function sequence of the Painlevé <span></span><math>\n <semantics>\n <msup>\n <mtext>III</mtext>\n <mo>′</mo>\n </msup>\n <annotation>$\\text{III}^{\\prime }$</annotation>\n </semantics></math> equation. We derive the asymptotic expansions of the Toeplitz determinant up to and including the constant terms as the size of the determinant tends to infinity. The constant terms therein are expressed in terms of the Riemann zeta-function and the Barnes <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-function. A third-order phase transition in the leading terms of the asymptotic expansions is also observed.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the partition function of the perturbed Gross–Witten–Wadia unitary matrix model\",\"authors\":\"Yu Chen,&nbsp;Shuai-Xia Xu,&nbsp;Yu-Qiu Zhao\",\"doi\":\"10.1111/sapm.12762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the asymptotics of the partition function of the extended Gross–Witten–Wadia unitary matrix model by introducing an extra logarithmic term in the potential. The partition function can be written as a Toeplitz determinant with entries expressed in terms of the modified Bessel functions of the first kind and furnishes a <span></span><math>\\n <semantics>\\n <mi>τ</mi>\\n <annotation>$\\\\tau$</annotation>\\n </semantics></math>-function sequence of the Painlevé <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>III</mtext>\\n <mo>′</mo>\\n </msup>\\n <annotation>$\\\\text{III}^{\\\\prime }$</annotation>\\n </semantics></math> equation. We derive the asymptotic expansions of the Toeplitz determinant up to and including the constant terms as the size of the determinant tends to infinity. The constant terms therein are expressed in terms of the Riemann zeta-function and the Barnes <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-function. A third-order phase transition in the leading terms of the asymptotic expansions is also observed.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12762\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12762","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过在势中引入额外的对数项,我们考虑了扩展的格罗斯-威滕-瓦迪亚单元矩阵模型的分割函数的渐近性。分割函数可以写成一个托普利兹行列式,其项用修正的贝塞尔第一类函数表示,并提供了一个潘勒韦方程的函数序列。当行列式的大小趋于无穷大时,我们推导出托普利兹行列式的渐近展开式,其中包括常数项。其中的常数项用黎曼zeta函数和巴恩斯函数表示。在渐近展开的前导项中也观察到了三阶相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of the partition function of the perturbed Gross–Witten–Wadia unitary matrix model

We consider the asymptotics of the partition function of the extended Gross–Witten–Wadia unitary matrix model by introducing an extra logarithmic term in the potential. The partition function can be written as a Toeplitz determinant with entries expressed in terms of the modified Bessel functions of the first kind and furnishes a τ $\tau$ -function sequence of the Painlevé III $\text{III}^{\prime }$ equation. We derive the asymptotic expansions of the Toeplitz determinant up to and including the constant terms as the size of the determinant tends to infinity. The constant terms therein are expressed in terms of the Riemann zeta-function and the Barnes G $G$ -function. A third-order phase transition in the leading terms of the asymptotic expansions is also observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信