具有吸引力转换的种群通量合作模型稳态的分岔结构

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Masahiro Adachi, Kousuke Kuto
{"title":"具有吸引力转换的种群通量合作模型稳态的分岔结构","authors":"Masahiro Adachi,&nbsp;Kousuke Kuto","doi":"10.1111/sapm.12761","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the steady states to a diffusive Lotka–Volterra cooperative model with population flux by attractive transition. The first result gives many bifurcation points on the branch of the positive constant solution under the weak cooperative condition. The second result shows every steady state approaches a solution of the scalar field equation as the coefficients of the flux tend to infinity. Indeed, the numerical simulation using pde2path exhibits the global bifurcation branch of the cooperative model with large population flux is near that of the scalar field equation.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation structure of steady states for a cooperative model with population flux by attractive transition\",\"authors\":\"Masahiro Adachi,&nbsp;Kousuke Kuto\",\"doi\":\"10.1111/sapm.12761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the steady states to a diffusive Lotka–Volterra cooperative model with population flux by attractive transition. The first result gives many bifurcation points on the branch of the positive constant solution under the weak cooperative condition. The second result shows every steady state approaches a solution of the scalar field equation as the coefficients of the flux tend to infinity. Indeed, the numerical simulation using pde2path exhibits the global bifurcation branch of the cooperative model with large population flux is near that of the scalar field equation.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12761\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12761","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有吸引过渡的种群通量的扩散洛特卡-伏特拉合作模型的稳态。第一个结果给出了弱合作条件下正常量解分支上的许多分岔点。第二个结果表明,当通量系数趋于无穷大时,每个稳态都接近于标量场方程的解。事实上,使用 pde2path 进行的数值模拟显示,大人口通量合作模型的全局分岔分支接近标量场方程的分岔分支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation structure of steady states for a cooperative model with population flux by attractive transition

This paper studies the steady states to a diffusive Lotka–Volterra cooperative model with population flux by attractive transition. The first result gives many bifurcation points on the branch of the positive constant solution under the weak cooperative condition. The second result shows every steady state approaches a solution of the scalar field equation as the coefficients of the flux tend to infinity. Indeed, the numerical simulation using pde2path exhibits the global bifurcation branch of the cooperative model with large population flux is near that of the scalar field equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信