基于遗传算法的碳-凯芙拉混合编织加固材料数值模拟与预成型参数优化

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Sasa Gao, Zuwang Yu, Zhengtao Qu, Zeyu Wang, Hua Xin
{"title":"基于遗传算法的碳-凯芙拉混合编织加固材料数值模拟与预成型参数优化","authors":"Sasa Gao, Zuwang Yu, Zhengtao Qu, Zeyu Wang, Hua Xin","doi":"10.1007/s10443-024-10263-8","DOIUrl":null,"url":null,"abstract":"<p>Carbon-Kevlar hybrid woven reinforcement materials have high specific strength and modulus, excellent fatigue resistance, which are widely used in aerospace applications. Due to its special mechanical properties by hybridization, the forming quality is affected by various factors such as reinforcement properties and process parameters. In order to improve the forming quality of Carbon-Kevlar hybrid woven reinforcement and reduce the forming defects, this paper proposes a new optimization method combined with genetic algorithm. Taking the maximum shear angle of the preform as the optimization objective, a genetic algorithm is used to optimize the load and size of the tetrahedral structure blank holder. The results indicate that the peak shear angle decreased from 52.14° to 43.90°, while the optimal forces on the five parts of the blank holder are <i>RF</i><sub><i>1</i></sub> = 20 N, <i>RF</i><sub><i>2</i></sub> = 26 N, <i>RF</i><sub><i>3</i></sub> = 45 N, <i>RF</i><sub><i>4</i></sub> = 14 N, <i>RF</i><sub><i>5</i></sub> = 45 N, respectively, and the optimal gaps between the blank holder parts is <i>BW</i><sub><i>1</i></sub> = 4 mm, <i>BW</i><sub><i>2</i></sub> = 22 mm. Then, potential wrinkling areas were predicted by the in-plane negative strain. It was found that the minimum in-plane negative strain of the sample in the two main fiber directions was effectively controlled, and the negative strain distribution in the useful areas was more uniform, thereby reducing the potential wrinkling areas, indicating the effectiveness of the optimization method.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation and Preforming Parameters Optimization of Carbon-Kevlar Hybrid Woven Reinforcement Materials Based on Genetic Algorithm\",\"authors\":\"Sasa Gao, Zuwang Yu, Zhengtao Qu, Zeyu Wang, Hua Xin\",\"doi\":\"10.1007/s10443-024-10263-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon-Kevlar hybrid woven reinforcement materials have high specific strength and modulus, excellent fatigue resistance, which are widely used in aerospace applications. Due to its special mechanical properties by hybridization, the forming quality is affected by various factors such as reinforcement properties and process parameters. In order to improve the forming quality of Carbon-Kevlar hybrid woven reinforcement and reduce the forming defects, this paper proposes a new optimization method combined with genetic algorithm. Taking the maximum shear angle of the preform as the optimization objective, a genetic algorithm is used to optimize the load and size of the tetrahedral structure blank holder. The results indicate that the peak shear angle decreased from 52.14° to 43.90°, while the optimal forces on the five parts of the blank holder are <i>RF</i><sub><i>1</i></sub> = 20 N, <i>RF</i><sub><i>2</i></sub> = 26 N, <i>RF</i><sub><i>3</i></sub> = 45 N, <i>RF</i><sub><i>4</i></sub> = 14 N, <i>RF</i><sub><i>5</i></sub> = 45 N, respectively, and the optimal gaps between the blank holder parts is <i>BW</i><sub><i>1</i></sub> = 4 mm, <i>BW</i><sub><i>2</i></sub> = 22 mm. Then, potential wrinkling areas were predicted by the in-plane negative strain. It was found that the minimum in-plane negative strain of the sample in the two main fiber directions was effectively controlled, and the negative strain distribution in the useful areas was more uniform, thereby reducing the potential wrinkling areas, indicating the effectiveness of the optimization method.</p>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10443-024-10263-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10263-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

碳-凯夫拉混合编织加固材料具有较高的比强度和比模量,以及优异的抗疲劳性能,被广泛应用于航空航天领域。由于其杂化后的特殊力学性能,成型质量受到加固性能和工艺参数等多种因素的影响。为了提高碳-凯芙拉混合编织加固材料的成形质量,减少成形缺陷,本文提出了一种结合遗传算法的新优化方法。以预型件的最大剪切角为优化目标,采用遗传算法优化四面体结构坯料支架的载荷和尺寸。结果表明,峰值剪切角从 52.14°减小到 43.90°,坯料支架五个部分的最佳受力分别为 RF1 = 20 N、RF2 = 26 N、RF3 = 45 N、RF4 = 14 N、RF5 = 45 N,坯料支架各部分之间的最佳间隙为 BW1 = 4 mm、BW2 = 22 mm。然后,通过面内负应变预测潜在的起皱区域。结果发现,试样在两个主要纤维方向上的最小面内负应变得到了有效控制,有用区域的负应变分布更加均匀,从而减少了潜在的起皱区域,说明优化方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Simulation and Preforming Parameters Optimization of Carbon-Kevlar Hybrid Woven Reinforcement Materials Based on Genetic Algorithm

Numerical Simulation and Preforming Parameters Optimization of Carbon-Kevlar Hybrid Woven Reinforcement Materials Based on Genetic Algorithm

Carbon-Kevlar hybrid woven reinforcement materials have high specific strength and modulus, excellent fatigue resistance, which are widely used in aerospace applications. Due to its special mechanical properties by hybridization, the forming quality is affected by various factors such as reinforcement properties and process parameters. In order to improve the forming quality of Carbon-Kevlar hybrid woven reinforcement and reduce the forming defects, this paper proposes a new optimization method combined with genetic algorithm. Taking the maximum shear angle of the preform as the optimization objective, a genetic algorithm is used to optimize the load and size of the tetrahedral structure blank holder. The results indicate that the peak shear angle decreased from 52.14° to 43.90°, while the optimal forces on the five parts of the blank holder are RF1 = 20 N, RF2 = 26 N, RF3 = 45 N, RF4 = 14 N, RF5 = 45 N, respectively, and the optimal gaps between the blank holder parts is BW1 = 4 mm, BW2 = 22 mm. Then, potential wrinkling areas were predicted by the in-plane negative strain. It was found that the minimum in-plane negative strain of the sample in the two main fiber directions was effectively controlled, and the negative strain distribution in the useful areas was more uniform, thereby reducing the potential wrinkling areas, indicating the effectiveness of the optimization method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信