{"title":"高丽红参通过调节肠道微生物群缓解右旋糖酐硫酸钠诱发的小鼠结肠炎","authors":"","doi":"10.1016/j.jgr.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>There is a growing interest in understanding the association between the gut microbiota and inflammatory bowel disease (IBD). Natural compounds, such as Korean Red Ginseng (KRG), show promise for IBD treatment because of their ability to influence gut microbiota. This study explored the effects of KRG on gut microbiota modulation and subsequent intestinal epithelial cell regeneration in an experimental colitis model.</div></div><div><h3>Method</h3><div>Using a mouse model of colitis induced by 2 % dextran sodium sulfate, the study administered 200 or 400 mg/kg/day of KRG to evaluate its biological effects. Colitis symptoms were assessed through body weight, disease activity index, colon length, and histological analysis. The microbial composition in the fecal was determined using 16S rRNA sequencing. To evaluate regeneration signals in the colon, western blotting and immunohistochemistry assays were conducted.</div></div><div><h3>Result</h3><div>Administration of KRG effectively mitigated colitis symptoms in mice, as indicated by histological examination showing alleviated epithelial damage and inflammation, along with increased mucus production. Microbiota analysis showed that KRG significantly altered microbial diversity, favoring beneficial taxa and suppressing harmful taxa. Moreover, ameliorated β-catenin/transcription factor-4 protein expression, a key signal associated with epithelial cell regeneration, was observed in the KRG treated groups, accompanied by improved intestinal linings.</div></div><div><h3>Conclusion</h3><div>These findings suggest that KRG exerts biological effects in colitis by modulating gut microbiota and creating a favorable intestinal environment, thereby reducing regenerative signals. Further research is warranted to elucidate the cellular and molecular mechanisms underlying the interaction of KRG with gut microbiota and pave the way for effective IBD therapies.</div></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Korean Red Ginseng alleviates dextran sodium sulfate-induced colitis through gut microbiota modulation in mice\",\"authors\":\"\",\"doi\":\"10.1016/j.jgr.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>There is a growing interest in understanding the association between the gut microbiota and inflammatory bowel disease (IBD). Natural compounds, such as Korean Red Ginseng (KRG), show promise for IBD treatment because of their ability to influence gut microbiota. This study explored the effects of KRG on gut microbiota modulation and subsequent intestinal epithelial cell regeneration in an experimental colitis model.</div></div><div><h3>Method</h3><div>Using a mouse model of colitis induced by 2 % dextran sodium sulfate, the study administered 200 or 400 mg/kg/day of KRG to evaluate its biological effects. Colitis symptoms were assessed through body weight, disease activity index, colon length, and histological analysis. The microbial composition in the fecal was determined using 16S rRNA sequencing. To evaluate regeneration signals in the colon, western blotting and immunohistochemistry assays were conducted.</div></div><div><h3>Result</h3><div>Administration of KRG effectively mitigated colitis symptoms in mice, as indicated by histological examination showing alleviated epithelial damage and inflammation, along with increased mucus production. Microbiota analysis showed that KRG significantly altered microbial diversity, favoring beneficial taxa and suppressing harmful taxa. Moreover, ameliorated β-catenin/transcription factor-4 protein expression, a key signal associated with epithelial cell regeneration, was observed in the KRG treated groups, accompanied by improved intestinal linings.</div></div><div><h3>Conclusion</h3><div>These findings suggest that KRG exerts biological effects in colitis by modulating gut microbiota and creating a favorable intestinal environment, thereby reducing regenerative signals. Further research is warranted to elucidate the cellular and molecular mechanisms underlying the interaction of KRG with gut microbiota and pave the way for effective IBD therapies.</div></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226845324001271\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845324001271","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Korean Red Ginseng alleviates dextran sodium sulfate-induced colitis through gut microbiota modulation in mice
Background
There is a growing interest in understanding the association between the gut microbiota and inflammatory bowel disease (IBD). Natural compounds, such as Korean Red Ginseng (KRG), show promise for IBD treatment because of their ability to influence gut microbiota. This study explored the effects of KRG on gut microbiota modulation and subsequent intestinal epithelial cell regeneration in an experimental colitis model.
Method
Using a mouse model of colitis induced by 2 % dextran sodium sulfate, the study administered 200 or 400 mg/kg/day of KRG to evaluate its biological effects. Colitis symptoms were assessed through body weight, disease activity index, colon length, and histological analysis. The microbial composition in the fecal was determined using 16S rRNA sequencing. To evaluate regeneration signals in the colon, western blotting and immunohistochemistry assays were conducted.
Result
Administration of KRG effectively mitigated colitis symptoms in mice, as indicated by histological examination showing alleviated epithelial damage and inflammation, along with increased mucus production. Microbiota analysis showed that KRG significantly altered microbial diversity, favoring beneficial taxa and suppressing harmful taxa. Moreover, ameliorated β-catenin/transcription factor-4 protein expression, a key signal associated with epithelial cell regeneration, was observed in the KRG treated groups, accompanied by improved intestinal linings.
Conclusion
These findings suggest that KRG exerts biological effects in colitis by modulating gut microbiota and creating a favorable intestinal environment, thereby reducing regenerative signals. Further research is warranted to elucidate the cellular and molecular mechanisms underlying the interaction of KRG with gut microbiota and pave the way for effective IBD therapies.
期刊介绍:
Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research.
JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports.
JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.