{"title":"乳酸-线粒体串联:治疗败血症所致急性肾损伤的新方向","authors":"Zhixiong Wu, Wei Qing Liu, Liang Tang, Qiong Yuan, Yaling Li, Hongyu Hu, Xin Luo, Fan Ouyang","doi":"10.1002/cbin.12240","DOIUrl":null,"url":null,"abstract":"<p>Independent risk factors for sepsis-associated acute kidney injury (S-AKI) patients include elevated lactate levels, but the specific mechanism remains unclear. Recently, An et al. discovered that excessive acetylation and inactivation of PDHA1 lead to overproduction of lactate, resulting in mitochondrial fragmentation, ATP depletion, excessive mtROS production, and mitochondrial apoptosis, thereby exacerbating AKI in sepsis. Therefore, understanding the pathophysiological processes of mitochondrial function and lactate generation in SAKI is essential and can aid in the development of novel therapeutic strategies. This review elucidates the pathological mechanisms of mitochondrial autophagy and dynamics in AKI. We also discuss the sources of lactate in SAKI and some consequences of lactonization, which may provide new strategies for improving renal injury and delaying the progression of these diseases.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"48 11","pages":"1621-1624"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactate-mitochondrial crosstalk: A new direction in the treatment of sepsis-induced acute kidney injury\",\"authors\":\"Zhixiong Wu, Wei Qing Liu, Liang Tang, Qiong Yuan, Yaling Li, Hongyu Hu, Xin Luo, Fan Ouyang\",\"doi\":\"10.1002/cbin.12240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Independent risk factors for sepsis-associated acute kidney injury (S-AKI) patients include elevated lactate levels, but the specific mechanism remains unclear. Recently, An et al. discovered that excessive acetylation and inactivation of PDHA1 lead to overproduction of lactate, resulting in mitochondrial fragmentation, ATP depletion, excessive mtROS production, and mitochondrial apoptosis, thereby exacerbating AKI in sepsis. Therefore, understanding the pathophysiological processes of mitochondrial function and lactate generation in SAKI is essential and can aid in the development of novel therapeutic strategies. This review elucidates the pathological mechanisms of mitochondrial autophagy and dynamics in AKI. We also discuss the sources of lactate in SAKI and some consequences of lactonization, which may provide new strategies for improving renal injury and delaying the progression of these diseases.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"48 11\",\"pages\":\"1621-1624\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12240\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12240","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lactate-mitochondrial crosstalk: A new direction in the treatment of sepsis-induced acute kidney injury
Independent risk factors for sepsis-associated acute kidney injury (S-AKI) patients include elevated lactate levels, but the specific mechanism remains unclear. Recently, An et al. discovered that excessive acetylation and inactivation of PDHA1 lead to overproduction of lactate, resulting in mitochondrial fragmentation, ATP depletion, excessive mtROS production, and mitochondrial apoptosis, thereby exacerbating AKI in sepsis. Therefore, understanding the pathophysiological processes of mitochondrial function and lactate generation in SAKI is essential and can aid in the development of novel therapeutic strategies. This review elucidates the pathological mechanisms of mitochondrial autophagy and dynamics in AKI. We also discuss the sources of lactate in SAKI and some consequences of lactonization, which may provide new strategies for improving renal injury and delaying the progression of these diseases.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.