{"title":"有丝分裂的光激活和追逐实验:通过流体交换系统优化通量测量。","authors":"Hiroyuki Morinaga,Yoh Sugawara,Yoshinori Kitagawa,Jingyuan Chen,Nobuo Yasuda,Hiroki Ogata,Yoshihiro Yamaguchi,Masao Kaneki,Joseph A Jeevendra Martyn,Shingo Yasuhara","doi":"10.1080/07366205.2024.2372955","DOIUrl":null,"url":null,"abstract":"Modulating autophagy and mitophagy, vital cellular quality control systems, offer therapeutic potential for critical illnesses. However, limited drug screening options hinder progress. We present a novel assay using the photoswitchable fluorescent reporter, mito-Kaede, to quantify mitophagy flux. Mito-Kaede's superior UV-induced photoconversion and brightness post-conversion make it ideal for prolonged mitochondrial dynamics tracking. Its specificity in responding to mitophagy, confirmed by parkin-knockout cells, adds value. When coupled with a custom fluid exchange system, enabling efficient medium changes, precise mitophagy observations become feasible. This mitophagy assay, alongside our methodological insights, can decipher mitophagy's role in pathology and supports drug screening efforts.","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mito-kaede photoactivation and chase experiment for mitophagy: optimizing flux measurement via fluid exchange system.\",\"authors\":\"Hiroyuki Morinaga,Yoh Sugawara,Yoshinori Kitagawa,Jingyuan Chen,Nobuo Yasuda,Hiroki Ogata,Yoshihiro Yamaguchi,Masao Kaneki,Joseph A Jeevendra Martyn,Shingo Yasuhara\",\"doi\":\"10.1080/07366205.2024.2372955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modulating autophagy and mitophagy, vital cellular quality control systems, offer therapeutic potential for critical illnesses. However, limited drug screening options hinder progress. We present a novel assay using the photoswitchable fluorescent reporter, mito-Kaede, to quantify mitophagy flux. Mito-Kaede's superior UV-induced photoconversion and brightness post-conversion make it ideal for prolonged mitochondrial dynamics tracking. Its specificity in responding to mitophagy, confirmed by parkin-knockout cells, adds value. When coupled with a custom fluid exchange system, enabling efficient medium changes, precise mitophagy observations become feasible. This mitophagy assay, alongside our methodological insights, can decipher mitophagy's role in pathology and supports drug screening efforts.\",\"PeriodicalId\":8945,\"journal\":{\"name\":\"BioTechniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTechniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07366205.2024.2372955\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07366205.2024.2372955","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Mito-kaede photoactivation and chase experiment for mitophagy: optimizing flux measurement via fluid exchange system.
Modulating autophagy and mitophagy, vital cellular quality control systems, offer therapeutic potential for critical illnesses. However, limited drug screening options hinder progress. We present a novel assay using the photoswitchable fluorescent reporter, mito-Kaede, to quantify mitophagy flux. Mito-Kaede's superior UV-induced photoconversion and brightness post-conversion make it ideal for prolonged mitochondrial dynamics tracking. Its specificity in responding to mitophagy, confirmed by parkin-knockout cells, adds value. When coupled with a custom fluid exchange system, enabling efficient medium changes, precise mitophagy observations become feasible. This mitophagy assay, alongside our methodological insights, can decipher mitophagy's role in pathology and supports drug screening efforts.
期刊介绍:
BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies.
Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers:
Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions
Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices
Surveys of technical approaches related to broad fields of research
Reviews discussing advancements in techniques and methods related to broad fields of research
Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.