Nur Nasyita Binti Kamaruddin, Syed Bahari Ramadzan Syed Adnan, Zainal Abidin Ali, Gopinath Venkatraman, Maryam Mohammed Mashghan
{"title":"用于生物医学应用的 Mg2Sio4-粘土基纳米粒子的结构、机械和抗菌特性","authors":"Nur Nasyita Binti Kamaruddin, Syed Bahari Ramadzan Syed Adnan, Zainal Abidin Ali, Gopinath Venkatraman, Maryam Mohammed Mashghan","doi":"10.1007/s41779-024-01080-0","DOIUrl":null,"url":null,"abstract":"<p>Clay based Forsterite (Mg<sub>2</sub>SiO<sub>4</sub>-clay based) was synthesized using Halloysite nanotube clay via sol-gel method. The resultant materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), particle size analysis (PSA), and hardness analysis. The formation of Mg<sub>2</sub>SiO<sub>4</sub>-clay based nanoparticles was confirmed using X-ray diffraction and Fourier-transform infrared analysis. Mg<sub>2</sub>SiO<sub>4</sub>-clay based nanoparticles were treated at different high temperatures which are from 850 °C to 1050 °C. It was revealed that crystalline Mg<sub>2</sub>SiO<sub>4</sub>-clay based was formed at the lowest temperature (850 °C) and the different temperatures do not significantly affect the FTIR peaks. Moreover, the hardness and fracture toughness of Mg<sub>2</sub>SiO<sub>4</sub>-clay based was found to be higher than synth-Mg<sub>2</sub>SiO<sub>4,</sub> which are 1.03 ± 0.07 GPa and 5.7 ± 0.21 MPa m<sup>1/2,</sup> respectively. It was also found that the fracture toughness of Mg<sub>2</sub>SiO<sub>4</sub>-clay based was higher than a few types of cortical bones and synthetic Hydroxyapatite. Other than that, Mg<sub>2</sub>SiO<sub>4</sub>-clay based displayed remarkable antibacterial properties which is critical criteria for implant materials. These findings suggest that the Mg<sub>2</sub>SiO<sub>4</sub>-clay based possesses good structural, mechanical, and antibacterial properties and might be suitable for potential bioimplant materials.</p>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, mechanical and antibacterial properties of Mg2Sio4-clay based nanoparticles for biomedical application\",\"authors\":\"Nur Nasyita Binti Kamaruddin, Syed Bahari Ramadzan Syed Adnan, Zainal Abidin Ali, Gopinath Venkatraman, Maryam Mohammed Mashghan\",\"doi\":\"10.1007/s41779-024-01080-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Clay based Forsterite (Mg<sub>2</sub>SiO<sub>4</sub>-clay based) was synthesized using Halloysite nanotube clay via sol-gel method. The resultant materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), particle size analysis (PSA), and hardness analysis. The formation of Mg<sub>2</sub>SiO<sub>4</sub>-clay based nanoparticles was confirmed using X-ray diffraction and Fourier-transform infrared analysis. Mg<sub>2</sub>SiO<sub>4</sub>-clay based nanoparticles were treated at different high temperatures which are from 850 °C to 1050 °C. It was revealed that crystalline Mg<sub>2</sub>SiO<sub>4</sub>-clay based was formed at the lowest temperature (850 °C) and the different temperatures do not significantly affect the FTIR peaks. Moreover, the hardness and fracture toughness of Mg<sub>2</sub>SiO<sub>4</sub>-clay based was found to be higher than synth-Mg<sub>2</sub>SiO<sub>4,</sub> which are 1.03 ± 0.07 GPa and 5.7 ± 0.21 MPa m<sup>1/2,</sup> respectively. It was also found that the fracture toughness of Mg<sub>2</sub>SiO<sub>4</sub>-clay based was higher than a few types of cortical bones and synthetic Hydroxyapatite. Other than that, Mg<sub>2</sub>SiO<sub>4</sub>-clay based displayed remarkable antibacterial properties which is critical criteria for implant materials. These findings suggest that the Mg<sub>2</sub>SiO<sub>4</sub>-clay based possesses good structural, mechanical, and antibacterial properties and might be suitable for potential bioimplant materials.</p>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s41779-024-01080-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s41779-024-01080-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Structural, mechanical and antibacterial properties of Mg2Sio4-clay based nanoparticles for biomedical application
Clay based Forsterite (Mg2SiO4-clay based) was synthesized using Halloysite nanotube clay via sol-gel method. The resultant materials were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), particle size analysis (PSA), and hardness analysis. The formation of Mg2SiO4-clay based nanoparticles was confirmed using X-ray diffraction and Fourier-transform infrared analysis. Mg2SiO4-clay based nanoparticles were treated at different high temperatures which are from 850 °C to 1050 °C. It was revealed that crystalline Mg2SiO4-clay based was formed at the lowest temperature (850 °C) and the different temperatures do not significantly affect the FTIR peaks. Moreover, the hardness and fracture toughness of Mg2SiO4-clay based was found to be higher than synth-Mg2SiO4, which are 1.03 ± 0.07 GPa and 5.7 ± 0.21 MPa m1/2, respectively. It was also found that the fracture toughness of Mg2SiO4-clay based was higher than a few types of cortical bones and synthetic Hydroxyapatite. Other than that, Mg2SiO4-clay based displayed remarkable antibacterial properties which is critical criteria for implant materials. These findings suggest that the Mg2SiO4-clay based possesses good structural, mechanical, and antibacterial properties and might be suitable for potential bioimplant materials.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted