Marta Lipińska, Agnieszka Kooijman, Lucjan Śnieżek, Ireneusz Szachogłuchowicz, Janusz Torzewski, Yaiza Gonzalez-Garcia, Małgorzata Lewandowska
{"title":"微结构演变对通过搅拌摩擦焊制造的铝合金异种焊缝的机械和电化学性质的影响","authors":"Marta Lipińska, Agnieszka Kooijman, Lucjan Śnieżek, Ireneusz Szachogłuchowicz, Janusz Torzewski, Yaiza Gonzalez-Garcia, Małgorzata Lewandowska","doi":"10.1007/s11661-024-07550-1","DOIUrl":null,"url":null,"abstract":"<p>The present study investigated a new configuration of friction stir welded joints from two aluminum alloys. Dissimilar welds AA6082/AA1350 were examined, whereas, for AA1350, two states were investigated—coarse-grained (CG) and ultrafine-grained (UFG). Changes in the mechanical and electrochemical properties regarding the microstructure evolution across the welds were discussed. The average grain size in the stir zone (SZ) for all materials equaled 4 to 5 <i>µ</i>m with a fraction of high-angle grain boundaries of about 77 pct, indicating the occurrence of continuous dynamic recrystallization. Changes in the microhardness across the welds were connected with differences in grain size (AA1350) and dissolution of β″ precipitates in the SZ of AA6082. As a result, the tensile strength of the welds decreased compared to base materials AA6082 and AA1350 UFG; however, there was an increase when compared to the base material AA1350 CG. Electrochemical experiments revealed that pitting corrosion occurred for AA1350, while for AA6082, it was a combination of pitting and intergranular corrosion. The depth of corrosion attack was higher for AA1350, with a maximum value of ~ 70 <i>µ</i>m for base materials, while in the SZ, a depth decreased to 50 <i>µ</i>m. For the AA6082, the maximum depth was measured in the SZ and did not exceed 30 <i>µ</i>m.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Microstructure Evolution on the Mechanical and Electrochemical Properties of Dissimilar Welds from Aluminum Alloys Manufactured Via Friction Stir Welding\",\"authors\":\"Marta Lipińska, Agnieszka Kooijman, Lucjan Śnieżek, Ireneusz Szachogłuchowicz, Janusz Torzewski, Yaiza Gonzalez-Garcia, Małgorzata Lewandowska\",\"doi\":\"10.1007/s11661-024-07550-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study investigated a new configuration of friction stir welded joints from two aluminum alloys. Dissimilar welds AA6082/AA1350 were examined, whereas, for AA1350, two states were investigated—coarse-grained (CG) and ultrafine-grained (UFG). Changes in the mechanical and electrochemical properties regarding the microstructure evolution across the welds were discussed. The average grain size in the stir zone (SZ) for all materials equaled 4 to 5 <i>µ</i>m with a fraction of high-angle grain boundaries of about 77 pct, indicating the occurrence of continuous dynamic recrystallization. Changes in the microhardness across the welds were connected with differences in grain size (AA1350) and dissolution of β″ precipitates in the SZ of AA6082. As a result, the tensile strength of the welds decreased compared to base materials AA6082 and AA1350 UFG; however, there was an increase when compared to the base material AA1350 CG. Electrochemical experiments revealed that pitting corrosion occurred for AA1350, while for AA6082, it was a combination of pitting and intergranular corrosion. The depth of corrosion attack was higher for AA1350, with a maximum value of ~ 70 <i>µ</i>m for base materials, while in the SZ, a depth decreased to 50 <i>µ</i>m. For the AA6082, the maximum depth was measured in the SZ and did not exceed 30 <i>µ</i>m.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07550-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07550-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Influence of Microstructure Evolution on the Mechanical and Electrochemical Properties of Dissimilar Welds from Aluminum Alloys Manufactured Via Friction Stir Welding
The present study investigated a new configuration of friction stir welded joints from two aluminum alloys. Dissimilar welds AA6082/AA1350 were examined, whereas, for AA1350, two states were investigated—coarse-grained (CG) and ultrafine-grained (UFG). Changes in the mechanical and electrochemical properties regarding the microstructure evolution across the welds were discussed. The average grain size in the stir zone (SZ) for all materials equaled 4 to 5 µm with a fraction of high-angle grain boundaries of about 77 pct, indicating the occurrence of continuous dynamic recrystallization. Changes in the microhardness across the welds were connected with differences in grain size (AA1350) and dissolution of β″ precipitates in the SZ of AA6082. As a result, the tensile strength of the welds decreased compared to base materials AA6082 and AA1350 UFG; however, there was an increase when compared to the base material AA1350 CG. Electrochemical experiments revealed that pitting corrosion occurred for AA1350, while for AA6082, it was a combination of pitting and intergranular corrosion. The depth of corrosion attack was higher for AA1350, with a maximum value of ~ 70 µm for base materials, while in the SZ, a depth decreased to 50 µm. For the AA6082, the maximum depth was measured in the SZ and did not exceed 30 µm.