{"title":"关于紧凑几乎赫尔墨斯流形上的抛物蒙日-安培类型方程","authors":"Masaya Kawamura","doi":"10.1002/mana.202300155","DOIUrl":null,"url":null,"abstract":"<p>We investigate a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds and derive a priori gradient and second-order derivative estimates for solutions to this parabolic equation. These a priori estimates give us higher order estimates and a long-time solution. Then, we can observe its behavior as <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$t\\rightarrow \\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds\",\"authors\":\"Masaya Kawamura\",\"doi\":\"10.1002/mana.202300155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds and derive a priori gradient and second-order derivative estimates for solutions to this parabolic equation. These a priori estimates give us higher order estimates and a long-time solution. Then, we can observe its behavior as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$t\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds
We investigate a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds and derive a priori gradient and second-order derivative estimates for solutions to this parabolic equation. These a priori estimates give us higher order estimates and a long-time solution. Then, we can observe its behavior as .