复二次曲面中实超曲面上的伪里奇-山边孤子

Pub Date : 2024-08-12 DOI:10.1002/mana.202400087
Young Jin Suh
{"title":"复二次曲面中实超曲面上的伪里奇-山边孤子","authors":"Young Jin Suh","doi":"10.1002/mana.202400087","DOIUrl":null,"url":null,"abstract":"<p>First, we introduce a new notion of pseudo-anti commuting for real hypersurfaces in the complex quadric <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>Q</mi>\n <mi>m</mi>\n </msup>\n <mo>=</mo>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mrow>\n <mi>m</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>/</mo>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mi>m</mi>\n </msub>\n <mi>S</mi>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$Q^m = SO_{m+2}/SO_mSO_2$</annotation>\n </semantics></math> and give a complete classification of Hopf pseudo-Ricci–Yamabe soliton real hypersurfaces in the complex quadric <span></span><math>\n <semantics>\n <msup>\n <mi>Q</mi>\n <mi>m</mi>\n </msup>\n <annotation>$Q^m$</annotation>\n </semantics></math>. Next as an application we obtain a classification of gradient pseudo-Ricci–Yamabe solitons on Hopf real hypersurfaces in <span></span><math>\n <semantics>\n <msup>\n <mi>Q</mi>\n <mi>m</mi>\n </msup>\n <annotation>$Q^m$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Ricci–Yamabe solitons on real hypersurfaces in the complex quadric\",\"authors\":\"Young Jin Suh\",\"doi\":\"10.1002/mana.202400087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First, we introduce a new notion of pseudo-anti commuting for real hypersurfaces in the complex quadric <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>Q</mi>\\n <mi>m</mi>\\n </msup>\\n <mo>=</mo>\\n <mi>S</mi>\\n <msub>\\n <mi>O</mi>\\n <mrow>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>/</mo>\\n <mi>S</mi>\\n <msub>\\n <mi>O</mi>\\n <mi>m</mi>\\n </msub>\\n <mi>S</mi>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$Q^m = SO_{m+2}/SO_mSO_2$</annotation>\\n </semantics></math> and give a complete classification of Hopf pseudo-Ricci–Yamabe soliton real hypersurfaces in the complex quadric <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Q</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$Q^m$</annotation>\\n </semantics></math>. Next as an application we obtain a classification of gradient pseudo-Ricci–Yamabe solitons on Hopf real hypersurfaces in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>Q</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$Q^m$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先,我们为复二次元中的实超曲面引入了一个新的伪反换向概念,并给出了复二次元中霍普夫伪里奇-山边孤子实超曲面的完整分类。接下来,作为一个应用,我们得到了.NET 中霍普夫实超曲面上梯度伪里奇-山边孤子的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Pseudo-Ricci–Yamabe solitons on real hypersurfaces in the complex quadric

First, we introduce a new notion of pseudo-anti commuting for real hypersurfaces in the complex quadric Q m = S O m + 2 / S O m S O 2 $Q^m = SO_{m+2}/SO_mSO_2$ and give a complete classification of Hopf pseudo-Ricci–Yamabe soliton real hypersurfaces in the complex quadric Q m $Q^m$ . Next as an application we obtain a classification of gradient pseudo-Ricci–Yamabe solitons on Hopf real hypersurfaces in Q m $Q^m$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信