Guillermo P. Curbera, Susumu Okada, Werner J. Ricker
{"title":"有限希尔伯特变换的度量论问题","authors":"Guillermo P. Curbera, Susumu Okada, Werner J. Ricker","doi":"10.1002/mana.202200537","DOIUrl":null,"url":null,"abstract":"<p>The finite Hilbert transform <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>, when acting in the classical Zygmund space <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mi>l</mi>\n <mi>o</mi>\n <mi>g</mi>\n <mi>L</mi>\n </mrow>\n <annotation>$L\\textnormal {log} L$</annotation>\n </semantics></math> (over <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(-1,1)$</annotation>\n </semantics></math>), was intensively studied in [8]. In this note, an integral representation of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is established via the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^1(-1,1)$</annotation>\n </semantics></math>-valued measure <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n </msub>\n <mo>:</mo>\n <mi>A</mi>\n <mo>↦</mo>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>χ</mi>\n <mi>A</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$m_{L^1}: A\\mapsto T(\\chi _A)$</annotation>\n </semantics></math> for each Borel set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$A\\subseteq (-1,1)$</annotation>\n </semantics></math>. This integral representation, together with various non-trivial properties of <span></span><math>\n <semantics>\n <msub>\n <mi>m</mi>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n </msub>\n <annotation>$m_{L^1}$</annotation>\n </semantics></math>, allows the use of measure theoretic methods (not available in [8]) to establish new properties of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>. For instance, as an operator between Banach function spaces <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> plays a crucial role.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure theoretic aspects of the finite Hilbert transform\",\"authors\":\"Guillermo P. Curbera, Susumu Okada, Werner J. Ricker\",\"doi\":\"10.1002/mana.202200537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The finite Hilbert transform <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math>, when acting in the classical Zygmund space <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mi>l</mi>\\n <mi>o</mi>\\n <mi>g</mi>\\n <mi>L</mi>\\n </mrow>\\n <annotation>$L\\\\textnormal {log} L$</annotation>\\n </semantics></math> (over <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(-1,1)$</annotation>\\n </semantics></math>), was intensively studied in [8]. In this note, an integral representation of <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is established via the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^1(-1,1)$</annotation>\\n </semantics></math>-valued measure <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>m</mi>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n </msub>\\n <mo>:</mo>\\n <mi>A</mi>\\n <mo>↦</mo>\\n <mi>T</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>χ</mi>\\n <mi>A</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$m_{L^1}: A\\\\mapsto T(\\\\chi _A)$</annotation>\\n </semantics></math> for each Borel set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊆</mo>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$A\\\\subseteq (-1,1)$</annotation>\\n </semantics></math>. This integral representation, together with various non-trivial properties of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>m</mi>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n </msub>\\n <annotation>$m_{L^1}$</annotation>\\n </semantics></math>, allows the use of measure theoretic methods (not available in [8]) to establish new properties of <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math>. For instance, as an operator between Banach function spaces <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for <span></span><math>\\n <semantics>\\n <mi>T</mi>\\n <annotation>$T$</annotation>\\n </semantics></math> plays a crucial role.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measure theoretic aspects of the finite Hilbert transform
The finite Hilbert transform , when acting in the classical Zygmund space (over ), was intensively studied in [8]. In this note, an integral representation of is established via the -valued measure for each Borel set . This integral representation, together with various non-trivial properties of , allows the use of measure theoretic methods (not available in [8]) to establish new properties of . For instance, as an operator between Banach function spaces is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for plays a crucial role.