{"title":"临界 p$p$ 双谐波问题的多重性结果","authors":"Said El Manouni, Kanishka Perera","doi":"10.1002/mana.202300535","DOIUrl":null,"url":null,"abstract":"<p>We prove new multiplicity results for some critical growth <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-biharmonic problems in bounded domains. More specifically, we show that each of the problems considered here has arbitrarily many solutions for all sufficiently large values of a certain parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\lambda &gt; 0$</annotation>\n </semantics></math>. In particular, the number of solutions goes to infinity as <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\lambda \\rightarrow \\infty$</annotation>\n </semantics></math>. We also give an explicit lower bound on <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math> in order to have a given number of solutions. This lower bound will be in terms of an unbounded sequence of eigenvalues of a related eigenvalue problem. Our multiplicity results are new even in the semilinear case <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p = 2$</annotation>\n </semantics></math>. The proofs are based on an abstract critical point theorem.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 10","pages":"3943-3953"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity results for critical \\n \\n p\\n $p$\\n -biharmonic problems\",\"authors\":\"Said El Manouni, Kanishka Perera\",\"doi\":\"10.1002/mana.202300535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove new multiplicity results for some critical growth <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-biharmonic problems in bounded domains. More specifically, we show that each of the problems considered here has arbitrarily many solutions for all sufficiently large values of a certain parameter <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\lambda &gt; 0$</annotation>\\n </semantics></math>. In particular, the number of solutions goes to infinity as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\lambda \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>. We also give an explicit lower bound on <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$\\\\lambda$</annotation>\\n </semantics></math> in order to have a given number of solutions. This lower bound will be in terms of an unbounded sequence of eigenvalues of a related eigenvalue problem. Our multiplicity results are new even in the semilinear case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$p = 2$</annotation>\\n </semantics></math>. The proofs are based on an abstract critical point theorem.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 10\",\"pages\":\"3943-3953\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300535\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300535","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiplicity results for critical
p
$p$
-biharmonic problems
We prove new multiplicity results for some critical growth -biharmonic problems in bounded domains. More specifically, we show that each of the problems considered here has arbitrarily many solutions for all sufficiently large values of a certain parameter . In particular, the number of solutions goes to infinity as . We also give an explicit lower bound on in order to have a given number of solutions. This lower bound will be in terms of an unbounded sequence of eigenvalues of a related eigenvalue problem. Our multiplicity results are new even in the semilinear case . The proofs are based on an abstract critical point theorem.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index