完全非局部扩散方程的熵解

Pub Date : 2024-09-01 DOI:10.1002/mana.202400130
Ying Li, Chao Zhang
{"title":"完全非局部扩散方程的熵解","authors":"Ying Li,&nbsp;Chao Zhang","doi":"10.1002/mana.202400130","DOIUrl":null,"url":null,"abstract":"<p>We consider the fully nonlocal diffusion equations with nonnegative <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^1$</annotation>\n </semantics></math>-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy solutions to the fully nonlocal diffusion equations\",\"authors\":\"Ying Li,&nbsp;Chao Zhang\",\"doi\":\"10.1002/mana.202400130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the fully nonlocal diffusion equations with nonnegative <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$L^1$</annotation>\\n </semantics></math>-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了具有非负数据的完全非局部扩散方程。基于近似和能量方法,我们证明了此类问题的非负熵解的存在性和唯一性。我们的结果尤其适用于时空分数拉普拉斯方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Entropy solutions to the fully nonlocal diffusion equations

We consider the fully nonlocal diffusion equations with nonnegative L 1 $L^1$ -data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信