{"title":"完全非局部扩散方程的熵解","authors":"Ying Li, Chao Zhang","doi":"10.1002/mana.202400130","DOIUrl":null,"url":null,"abstract":"<p>We consider the fully nonlocal diffusion equations with nonnegative <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^1$</annotation>\n </semantics></math>-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy solutions to the fully nonlocal diffusion equations\",\"authors\":\"Ying Li, Chao Zhang\",\"doi\":\"10.1002/mana.202400130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the fully nonlocal diffusion equations with nonnegative <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$L^1$</annotation>\\n </semantics></math>-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entropy solutions to the fully nonlocal diffusion equations
We consider the fully nonlocal diffusion equations with nonnegative -data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.